B (archetype), 98 
                                                                          
                                                                          
B (definition), 99 
B (section), 100 
B (subsection, section B), 101 
basis 
    columns nonsingular matrix 
        example CABAK, 102 
    common size 
        theorem BIS, 103 
    crazy vector apace 
        example BC, 104 
    definition B, 105 
    matrices 
        example BM, 106 
        example BSM22, 107 
    polynomials 
        example BP, 108 
        example BPR, 109 
        example BSP4, 110 
        example SVP4, 111 
    subspace of matrices 
        example BDM22, 112 
BC (example), 113 
BCS (theorem), 114 
BDE (example), 115 
BDM22 (example), 116 
best cities 
    money magazine 
        example MBC, 117 
BIS (theorem), 118 
BM (example), 119 
BNM (subsection, section B), 120 
BNS (theorem), 121 
BP (example), 122 
BPR (example), 123 
BRLT (example), 124 
BRS (theorem), 125 
BS (theorem), 126 
BSCV (subsection, section B), 127 
                                                                          
                                                                          
BSM22 (example), 128 
BSP4 (example), 129 
C (archetype), 130 
C (definition), 131 
C (notation), 132 
C (part), 133 
C (Property), 134 
C (technique, section PT), 135 
CABAK (example), 136 
CACN (Property), 137 
CAEHW (example), 138 
CAF (Property), 139 
canonical form 
    nilpotent linear transformation 
        example CFNLT, 140 
        theorem CFNLT, 141 
CAV (subsection, section O), 142 
Cayley-Hamilton 
    theorem CHT, 143 
CB (section), 144 
CB (theorem), 145 
CBCV (example), 146 
CBM (definition), 147 
CBM (subsection, section CB), 148 
CBP (example), 149 
CC (Property), 150 
CCCV (definition), 151 
CCCV (notation), 152 
CCM (definition), 153 
CCM (example), 154 
CCM (notation), 155 
CCM (theorem), 156 
CCN (definition), 157 
CCN (notation), 158 
CCN (subsection, section CNO), 159 
CCRA (theorem), 160 
                                                                          
                                                                          
CCRM (theorem), 161 
CCT (theorem), 162 
CD (subsection, section DM), 163 
CD (technique, section PT), 164 
CEE (subsection, section EE), 165 
CELT (example), 166 
CELT (subsection, section CB), 167 
CEMS6 (example), 168 
CF (section), 169 
CFDVS (theorem), 170 
CFNLT (example), 171 
CFNLT (subsection, section NLT), 172 
CFNLT (theorem), 173 
CFV (example), 174 
change of basis 
    between polynomials 
        example CBP, 175 
change-of-basis 
    between column vectors 
        example CBCV, 176 
    matrix representation 
        theorem MRCB, 177 
    similarity 
        theorem SCB, 178 
    theorem CB, 179 
change-of-basis matrix 
    definition CBM, 180 
    inverse 
        theorem ICBM, 181 
characteristic polynomial 
    definition CP, 182 
    degree 
        theorem DCP, 183 
    size 3 matrix 
        example CPMS3, 184 
CHT (subsection, section JCF), 185 
CHT (theorem), 186 
CILT (subsection, section ILT), 187 
                                                                          
                                                                          
CILTI (theorem), 188 
CIM (subsection, section MISLE), 189 
CINM (theorem), 190 
CIVLT (example), 191 
CIVLT (theorem), 192 
CLI (theorem), 193 
CLTLT (theorem), 194 
CM (definition), 195 
CM (Property), 196 
CM32 (example), 197 
CMCN (Property), 198 
CMF (Property), 199 
CMI (example), 200 
CMIAB (example), 201 
CMVEI (theorem), 202 
CN (appendix), 203 
CNA (definition), 204 
CNA (notation), 205 
CNA (subsection, section CNO), 206 
CNE (definition), 207 
CNE (notation), 208 
CNM (definition), 209 
CNM (notation), 210 
CNMB (theorem), 211 
CNO (section), 212 
CNS1 (example), 213 
CNS2 (example), 214 
CNSV (example), 215 
COB (theorem), 216 
coefficient matrix 
    definition CM, 217 
    nonsingular 
        theorem SNCM, 218 
column space 
    as null space 
        theorem FS, 219 
    Archetype A 
        example CSAA, 220 
                                                                          
                                                                          
    Archetype B 
        example CSAB, 221 
    as null space 
        example CSANS, 222 
    as null space, Archetype G 
        example FSAG, 223 
    as row space 
        theorem CSRST, 224 
    basis 
        theorem BCS, 225 
    consistent system 
        theorem CSCS, 226 
    consistent systems 
        example CSMCS, 227 
    isomorphic to range, 228 
    matrix, 229 
    nonsingular matrix 
        theorem CSNM, 230 
    notation, 231 
    original columns, Archetype D 
        example CSOCD, 232 
    row operations, Archetype I 
        example CSROI, 233 
    subspace 
        theorem CSMS, 234 
    testing membership 
        example MCSM, 235 
    two computations 
        example CSTW, 236 
column vector addition 
    notation, 237 
column vector scalar multiplication 
    notation, 238 
commutativity 
    column vectors 
        Property CC, 239 
    matrices 
        Property CM, 240 
                                                                          
                                                                          
    vectors 
        Property C, 241 
complex m-space 
    example VSCV, 242 
complex arithmetic 
    example ACN, 243 
complex number 
    conjugate 
        example CSCN, 244 
    modulus 
        example MSCN, 245 
complex number 
    conjugate 
        definition CCN, 246 
    modulus 
        definition MCN, 247 
complex numbers 
    addition 
        definition CNA, 248 
        notation, 249 
    arithmetic properties 
        theorem PCNA, 250 
    equality 
        definition CNE, 251 
        notation, 252 
    multiplication 
        definition CNM, 253 
        notation, 254 
complex vector space 
    dimension 
        theorem DCM, 255 
composition 
    injective linear transformations 
        theorem CILTI, 256 
    surjective linear transformations 
        theorem CSLTS, 257 
conjugate 
    addition 
                                                                          
                                                                          
        theorem CCRA, 258 
    column vector 
        definition CCCV, 259 
    matrix 
        definition CCM, 260 
        notation, 261 
    multiplication 
        theorem CCRM, 262 
    notation, 263 
    of conjugate of a matrix 
        theorem CCM, 264 
    scalar multiplication 
        theorem CRSM, 265 
    twice 
        theorem CCT, 266 
    vector addition 
        theorem CRVA, 267 
conjugate of a vector 
    notation, 268 
conjugation 
    matrix addition 
        theorem CRMA, 269 
    matrix scalar multiplication 
        theorem CRMSM, 270 
    matrix transpose 
        theorem MCT, 271 
consistent linear system, 272 
consistent linear systems 
    theorem CSRN, 273 
consistent system 
    definition CS, 274 
constructive proofs 
    technique C, 275 
contradiction 
    technique CD, 276 
contrapositive 
    technique CP, 277 
converse 
                                                                          
                                                                          
    technique CV, 278 
coordinates 
    orthonormal basis 
        theorem COB, 279 
coordinatization 
    linear combination of matrices 
        example CM32, 280 
    linear independence 
        theorem CLI, 281 
    orthonormal basis 
        example CROB3, 282 
        example CROB4, 283 
    spanning sets 
        theorem CSS, 284 
coordinatization principle, 285 
coordinatizing 
    polynomials 
        example CP2, 286 
COV (example), 287 
COV (subsection, section LDS), 288 
CP (definition), 289 
CP (subsection, section VR), 290 
CP (technique, section PT), 291 
CP2 (example), 292 
CPMS3 (example), 293 
CPSM (theorem), 294 
crazy vector space 
    example CVSR, 295 
    properties 
        example PCVS, 296 
CRMA (theorem), 297 
CRMSM (theorem), 298 
CRN (theorem), 299 
CROB3 (example), 300 
CROB4 (example), 301 
CRS (section), 302 
CRS (subsection, section FS), 303 
CRSM (theorem), 304 
                                                                          
                                                                          
CRVA (theorem), 305 
CS (definition), 306 
CS (example), 307 
CS (subsection, section TSS), 308 
CSAA (example), 309 
CSAB (example), 310 
CSANS (example), 311 
CSCN (example), 312 
CSCS (theorem), 313 
CSIP (example), 314 
CSLT (subsection, section SLT), 315 
CSLTS (theorem), 316 
CSM (definition), 317 
CSM (notation), 318 
CSMCS (example), 319 
CSMS (theorem), 320 
CSNM (subsection, section CRS), 321 
CSNM (theorem), 322 
CSOCD (example), 323 
CSRN (theorem), 324 
CSROI (example), 325 
CSRST (diagram), 326 
CSRST (theorem), 327 
CSS (theorem), 328 
CSSE (subsection, section CRS), 329 
CSSOC (subsection, section CRS), 330 
CSTW (example), 331 
CTD (subsection, section TD), 332 
CTLT (example), 333 
CUMOS (theorem), 334 
curve fitting 
    polynomial through 5 points 
        example PTFP, 335 
CV (definition), 336 
CV (notation), 337 
CV (technique, section PT), 338 
CVA (definition), 339 
CVA (notation), 340 
                                                                          
                                                                          
CVC (notation), 341 
CVE (definition), 342 
CVE (notation), 343 
CVS (example), 344 
CVS (subsection, section VR), 345 
CVSM (definition), 346 
CVSM (example), 347 
CVSM (notation), 348 
CVSR (example), 349 
D (acronyms, section PDM), 350 
D (archetype), 351 
D (chapter), 352 
D (definition), 353 
D (notation), 354 
D (section), 355 
D (subsection, section D), 356 
D (subsection, section SD), 357 
D (technique, section PT), 358 
D33M (example), 359 
DAB (example), 360 
DC (example), 361 
DC (technique, section PT), 362 
DC (theorem), 363 
DCM (theorem), 364 
DCN (Property), 365 
DCP (theorem), 366 
DD (subsection, section DM), 367 
DEC (theorem), 368 
decomposition 
    technique DC, 369 
DED (theorem), 370 
definition 
    A, 371 
    AM, 372 
    AME, 373 
    B, 374 
                                                                          
                                                                          
    C, 375 
    CBM, 376 
    CCCV, 377 
    CCM, 378 
    CCN, 379 
    CM, 380 
    CNA, 381 
    CNE, 382 
    CNM, 383 
    CP, 384 
    CS, 385 
    CSM, 386 
    CV, 387 
    CVA, 388 
    CVE, 389 
    CVSM, 390 
    D, 391 
    DIM, 392 
    DM, 393 
    DS, 394 
    DZM, 395 
    EEF, 396 
    EELT, 397 
    EEM, 398 
    ELEM, 399 
    EM, 400 
    EO, 401 
    ES, 402 
    ESYS, 403 
    F, 404 
    GES, 405 
    GEV, 406 
    GME, 407 
    HI, 408 
    HID, 409 
    HM, 410 
    HP, 411 
    HS, 412 
                                                                          
                                                                          
    IDLT, 413 
    IDV, 414 
    IE, 415 
    ILT, 416 
    IM, 417 
    IMP, 418 
    IP, 419 
    IS, 420 
    IVLT, 421 
    IVS, 422 
    JB, 423 
    JCF, 424 
    KLT, 425 
    LC, 426 
    LCCV, 427 
    LI, 428 
    LICV, 429 
    LNS, 430 
    LSS, 431 
    LT, 432 
    LTA, 433 
    LTC, 434 
    LTM, 435 
    LTR, 436 
    LTSM, 437 
    M, 438 
    MA, 439 
    MCN, 440 
    ME, 441 
    MI, 442 
    MM, 443 
    MR, 444 
    MRLS, 445 
    MSM, 446 
    MVP, 447 
    NLT, 448 
    NM, 449 
    NOLT, 450 
                                                                          
                                                                          
    NOM, 451 
    NRML, 452 
    NSM, 453 
    NV, 454 
    ONS, 455 
    OSV, 456 
    OV, 457 
    PI, 458 
    PSM, 459 
    REM, 460 
    RLD, 461 
    RLDCV, 462 
    RLT, 463 
    RO, 464 
    ROLT, 465 
    ROM, 466 
    RR, 467 
    RREF, 468 
    RSM, 469 
    S, 470 
    SC, 471 
    SE, 472 
    SET, 473 
    SI, 474 
    SIM, 475 
    SLE, 476 
    SLT, 477 
    SM, 478 
    SOLV, 479 
    SQM, 480 
    SRM, 481 
    SS, 482 
    SSCV, 483 
    SSET, 484 
    SSLE, 485 
    SSSLE, 486 
    SU, 487 
    SUV, 488 
                                                                          
                                                                          
    SV, 489 
    SYM, 490 
    T, 491 
    technique D, 492 
    TM, 493 
    TS, 494 
    TSHSE, 495 
    TSVS, 496 
    UM, 497 
    UTM, 498 
    VM, 499 
    VOC, 500 
    VR, 501 
    VS, 502 
    VSCV, 503 
    VSM, 504 
    ZCV, 505 
    ZM, 506 
DEHD (example), 507 
DEM (theorem), 508 
DEMMM (theorem), 509 
DEMS5 (example), 510 
DER (theorem), 511 
DERC (theorem), 512 
determinant 
    computed two ways 
        example TCSD, 513 
    definition DM, 514 
    equal rows or columns 
        theorem DERC, 515 
    expansion, columns 
        theorem DEC, 516 
    expansion, rows 
        theorem DER, 517 
    identity matrix 
        theorem DIM, 518 
    matrix multiplication 
        theorem DRMM, 519 
                                                                          
                                                                          
    nonsingular matrix, 520 
    notation, 521 
    row or column multiple 
        theorem DRCM, 522 
    row or column swap 
        theorem DRCS, 523 
    size 2 matrix 
        theorem DMST, 524 
    size 3 matrix 
        example D33M, 525 
    transpose 
        theorem DT, 526 
    via row operations 
        example DRO, 527 
    zero 
        theorem SMZD, 528 
    zero row or column 
        theorem DZRC, 529 
    zero versus nonzero 
        example ZNDAB, 530 
determinant, upper triangular matrix 
    example DUTM, 531 
determinants 
    elementary matrices 
        theorem DEMMM, 532 
DF (Property), 533 
DF (subsection, section CF), 534 
DFS (subsection, section PD), 535 
DFS (theorem), 536 
DGES (theorem), 537 
diagonal matrix 
    definition DIM, 538 
diagonalizable 
    definition DZM, 539 
    distinct eigenvalues 
        example DEHD, 540 
        theorem DED, 541 
    full eigenspaces 
                                                                          
                                                                          
        theorem DMFE, 542 
    not 
        example NDMS4, 543 
diagonalizable matrix 
    high power 
        example HPDM, 544 
diagonalization 
    Archetype B 
        example DAB, 545 
    criteria 
        theorem DC, 546 
    example DMS3, 547 
diagram 
    CSRST, 548 
    DLTA, 549 
    DLTM, 550 
    DTSLS, 551 
    FTMR, 552 
    FTMRA, 553 
    GLT, 554 
    ILT, 555 
    MRCLT, 556 
    NILT, 557 
DIM (definition), 558 
DIM (theorem), 559 
dimension 
    crazy vector space 
        example DC, 560 
    definition D, 561 
    notation, 562 
    polynomial subspace 
        example DSP4, 563 
    proper subspaces 
        theorem PSSD, 564 
    subspace 
        example DSM22, 565 
direct sum 
    decomposing zero vector 
                                                                          
                                                                          
        theorem DSZV, 566 
    definition DS, 567 
    dimension 
        theorem DSD, 568 
    example SDS, 569 
    from a basis 
        theorem DSFB, 570 
    from one subspace 
        theorem DSFOS, 571 
    notation, 572 
    zero intersection 
        theorem DSZI, 573 
direct sums 
    linear independence 
        theorem DSLI, 574 
    repeated 
        theorem RDS, 575 
distributivity 
    complex numbers 
        Property DCN, 576 
    field 
        Property DF, 577 
distributivity, matrix addition 
    matrices 
        Property DMAM, 578 
distributivity, scalar addition 
    column vectors 
        Property DSAC, 579 
    matrices 
        Property DSAM, 580 
    vectors 
        Property DSA, 581 
distributivity, vector addition 
    column vectors 
        Property DVAC, 582 
    vectors 
        Property DVA, 583 
DLDS (theorem), 584 
                                                                          
                                                                          
DLTA (diagram), 585 
DLTM (diagram), 586 
DM (definition), 587 
DM (notation), 588 
DM (section), 589 
DM (theorem), 590 
DMAM (Property), 591 
DMFE (theorem), 592 
DMHP (subsection, section HP), 593 
DMHP (theorem), 594 
DMMP (theorem), 595 
DMS3 (example), 596 
DMST (theorem), 597 
DNLT (theorem), 598 
DNMMM (subsection, section PDM), 599 
DP (theorem), 600 
DRCM (theorem), 601 
DRCMA (theorem), 602 
DRCS (theorem), 603 
DRMM (theorem), 604 
DRO (example), 605 
DRO (subsection, section PDM), 606 
DROEM (subsection, section PDM), 607 
DS (definition), 608 
DS (notation), 609 
DS (subsection, section PD), 610 
DSA (Property), 611 
DSAC (Property), 612 
DSAM (Property), 613 
DSD (theorem), 614 
DSFB (theorem), 615 
DSFOS (theorem), 616 
DSLI (theorem), 617 
DSM22 (example), 618 
DSP4 (example), 619 
DSZI (theorem), 620 
DSZV (theorem), 621 
DT (theorem), 622 
                                                                          
                                                                          
DTSLS (diagram), 623 
DUTM (example), 624 
DVA (Property), 625 
DVAC (Property), 626 
DVM (theorem), 627 
DVS (subsection, section D), 628 
DZM (definition), 629 
DZRC (theorem), 630 
E (acronyms, section SD), 631 
E (archetype), 632 
E (chapter), 633 
E (technique, section PT), 634 
E.SAGE (computation, section SAGE), 635 
ECEE (subsection, section EE), 636 
EDELI (theorem), 637 
EDYES (theorem), 638 
EE (section), 639 
EEE (subsection, section EE), 640 
EEF (definition), 641 
EEF (subsection, section FS), 642 
EELT (definition), 643 
EELT (subsection, section CB), 644 
EEM (definition), 645 
EEM (subsection, section EE), 646 
EEMAP (theorem), 647 
EENS (example), 648 
EER (theorem), 649 
EESR (theorem), 650 
EHM (subsection, section PEE), 651 
eigenspace 
    as null space 
        theorem EMNS, 652 
    definition EM, 653 
    invariant subspace 
        theorem EIS, 654 
    subspace 
                                                                          
                                                                          
        theorem EMS, 655 
eigenspaces 
    sage, 656 
eigenvalue 
    algebraic multiplicity 
        definition AME, 657 
        notation, 658 
    complex 
        example CEMS6, 659 
    definition EEM, 660 
    existence 
        example CAEHW, 661 
        theorem EMHE, 662 
    geometric multiplicity 
        definition GME, 663 
        notation, 664 
    index, 665 
    linear transformation 
        definition EELT, 666 
    multiplicities 
        example EMMS4, 667 
    power 
        theorem EOMP, 668 
    root of characteristic polynomial 
        theorem EMRCP, 669 
    scalar multiple 
        theorem ESMM, 670 
    symmetric matrix 
        example ESMS4, 671 
    zero 
        theorem SMZE, 672 
eigenvalues 
    building desired 
        example BDE, 673 
    complex, of a linear transformation 
        example CELT, 674 
    conjugate pairs 
        theorem ERMCP, 675 
                                                                          
                                                                          
    distinct 
        example DEMS5, 676 
    example SEE, 677 
    Hermitian matrices 
        theorem HMRE, 678 
    inverse 
        theorem EIM, 679 
    maximum number 
        theorem MNEM, 680 
    multiplicities 
        example HMEM5, 681 
        theorem ME, 682 
    number 
        theorem NEM, 683 
    of a polynomial 
        theorem EPM, 684 
    size 3 matrix 
        example EMS3, 685 
        example ESMS3, 686 
    transpose 
        theorem ETM, 687 
eigenvalues, eigenvectors 
    vector, matrix representations 
        theorem EER, 688 
eigenvector, 689 
    linear transformation, 690 
eigenvectors, 691 
    conjugate pairs, 692 
    Hermitian matrices 
        theorem HMOE, 693 
    linear transformation 
        example ELTBM, 694 
        example ELTBP, 695 
    linearly independent 
        theorem EDELI, 696 
    of a linear transformation 
        example ELTT, 697 
EILT (subsection, section ILT), 698 
                                                                          
                                                                          
EIM (theorem), 699 
EIS (example), 700 
EIS (theorem), 701 
ELEM (definition), 702 
ELEM (notation), 703 
elementary matrices 
    definition ELEM, 704 
    determinants 
        theorem DEM, 705 
    nonsingular 
        theorem EMN, 706 
    notation, 707 
    row operations 
        example EMRO, 708 
        theorem EMDRO, 709 
ELIS (theorem), 710 
ELTBM (example), 711 
ELTBP (example), 712 
ELTT (example), 713 
EM (definition), 714 
EM (subsection, section DM), 715 
EMDRO (theorem), 716 
EMHE (theorem), 717 
EMMS4 (example), 718 
EMMVP (theorem), 719 
EMN (theorem), 720 
EMNS (theorem), 721 
EMP (theorem), 722 
empty set, 723 
    notation, 724 
EMRCP (theorem), 725 
EMRO (example), 726 
EMS (theorem), 727 
EMS3 (example), 728 
ENLT (theorem), 729 
EO (definition), 730 
EOMP (theorem), 731 
EOPSS (theorem), 732 
                                                                          
                                                                          
EPM (theorem), 733 
EPSM (theorem), 734 
equal matrices 
    via equal matrix-vector products 
        theorem EMMVP, 735 
equation operations 
    definition EO, 736 
    theorem EOPSS, 737 
equivalence statements 
    technique E, 738 
equivalences 
    technique ME, 739 
equivalent systems 
    definition ESYS, 740 
ERMCP (theorem), 741 
ES (definition), 742 
ES (notation), 743 
ESEO (subsection, section SSLE), 744 
ESLT (subsection, section SLT), 745 
ESMM (theorem), 746 
ESMS3 (example), 747 
ESMS4 (example), 748 
ESYS (definition), 749 
ETM (theorem), 750 
EVS (subsection, section VS), 751 
example 
    AALC, 752 
    ABLC, 753 
    ABS, 754 
    ACN, 755 
    AHSAC, 756 
    AIVLT, 757 
    ALT, 758 
    ALTMM, 759 
    AM, 760 
    AMAA, 761 
    ANILT, 762 
    ANM, 763 
                                                                          
                                                                          
    AOS, 764 
    ASC, 765 
    AVR, 766 
    BC, 767 
    BDE, 768 
    BDM22, 769 
    BM, 770 
    BP, 771 
    BPR, 772 
    BRLT, 773 
    BSM22, 774 
    BSP4, 775 
    CABAK, 776 
    CAEHW, 777 
    CBCV, 778 
    CBP, 779 
    CCM, 780 
    CELT, 781 
    CEMS6, 782 
    CFNLT, 783 
    CFV, 784 
    CIVLT, 785 
    CM32, 786 
    CMI, 787 
    CMIAB, 788 
    CNS1, 789 
    CNS2, 790 
    CNSV, 791 
    COV, 792 
    CP2, 793 
    CPMS3, 794 
    CROB3, 795 
    CROB4, 796 
    CS, 797 
    CSAA, 798 
    CSAB, 799 
    CSANS, 800 
    CSCN, 801 
                                                                          
                                                                          
    CSIP, 802 
    CSMCS, 803 
    CSOCD, 804 
    CSROI, 805 
    CSTW, 806 
    CTLT, 807 
    CVS, 808 
    CVSM, 809 
    CVSR, 810 
    D33M, 811 
    DAB, 812 
    DC, 813 
    DEHD, 814 
    DEMS5, 815 
    DMS3, 816 
    DRO, 817 
    DSM22, 818 
    DSP4, 819 
    DUTM, 820 
    EENS, 821 
    EIS, 822 
    ELTBM, 823 
    ELTBP, 824 
    ELTT, 825 
    EMMS4, 826 
    EMRO, 827 
    EMS3, 828 
    ESMS3, 829 
    ESMS4, 830 
    FDV, 831 
    FF8, 832 
    FRAN, 833 
    FS1, 834 
    FS2, 835 
    FSAG, 836 
    FSCF, 837 
    GE4, 838 
    GE6, 839 
                                                                          
                                                                          
    GENR6, 840 
    GSTV, 841 
    HISAA, 842 
    HISAD, 843 
    HMEM5, 844 
    HP, 845 
    HPDM, 846 
    HUSAB, 847 
    IAP, 848 
    IAR, 849 
    IAS, 850 
    IAV, 851 
    ILTVR, 852 
    IM, 853 
    IM11, 854 
    IS, 855 
    ISJB, 856 
    ISMR4, 857 
    ISMR6, 858 
    ISSI, 859 
    IVSAV, 860 
    JB4, 861 
    JCF10, 862 
    KPNLT, 863 
    KVMR, 864 
    LCM, 865 
    LDCAA, 866 
    LDHS, 867 
    LDP4, 868 
    LDRN, 869 
    LDS, 870 
    LIC, 871 
    LICAB, 872 
    LIHS, 873 
    LIM32, 874 
    LINSB, 875 
    LIP4, 876 
    LIS, 877 
                                                                          
                                                                          
    LLDS, 878 
    LNS, 879 
    LTDB1, 880 
    LTDB2, 881 
    LTDB3, 882 
    LTM, 883 
    LTPM, 884 
    LTPP, 885 
    LTRGE, 886 
    MA, 887 
    MBC, 888 
    MCSM, 889 
    MFLT, 890 
    MI, 891 
    MIVS, 892 
    MMNC, 893 
    MNSLE, 894 
    MOLT, 895 
    MPMR, 896 
    MRBE, 897 
    MRCM, 898 
    MSCN, 899 
    MSM, 900 
    MTV, 901 
    MWIAA, 902 
    NDMS4, 903 
    NIAO, 904 
    NIAQ, 905 
    NIAQR, 906 
    NIDAU, 907 
    NJB5, 908 
    NKAO, 909 
    NLT, 910 
    NM, 911 
    NM62, 912 
    NM64, 913 
    NM83, 914 
    NRREF, 915 
                                                                          
                                                                          
    NSAO, 916 
    NSAQ, 917 
    NSAQR, 918 
    NSC2A, 919 
    NSC2S, 920 
    NSC2Z, 921 
    NSDAT, 922 
    NSDS, 923 
    NSE, 924 
    NSEAI, 925 
    NSLE, 926 
    NSLIL, 927 
    NSNM, 928 
    NSR, 929 
    NSS, 930 
    OLTTR, 931 
    ONFV, 932 
    ONTV, 933 
    OSGMD, 934 
    OSMC, 935 
    PCVS, 936 
    PM, 937 
    PSHS, 938 
    PTFP, 939 
    PTM, 940 
    PTMEE, 941 
    RAO, 942 
    RES, 943 
    RNM, 944 
    RNSM, 945 
    ROD2, 946 
    ROD4, 947 
    RREF, 948 
    RREFN, 949 
    RRTI, 950 
    RS, 951 
    RSAI, 952 
    RSB, 953 
                                                                          
                                                                          
    RSC4, 954 
    RSC5, 955 
    RSNS, 956 
    RSREM, 957 
    RVMR, 958 
    S, 959 
    SAA, 960 
    SAB, 961 
    SABMI, 962 
    SAE, 963 
    SAN, 964 
    SAR, 965 
    SAV, 966 
    SC, 967 
    SC3, 968 
    SCAA, 969 
    SCAB, 970 
    SCAD, 971 
    SDS, 972 
    SEE, 973 
    SEEF, 974 
    SETM, 975 
    SI, 976 
    SM2Z7, 977 
    SM32, 978 
    SMLT, 979 
    SMS3, 980 
    SMS5, 981 
    SP4, 982 
    SPIAS, 983 
    SRR, 984 
    SS, 985 
    SS6W, 986 
    SSC, 987 
    SSET, 988 
    SSM22, 989 
    SSNS, 990 
    SSP, 991 
                                                                          
                                                                          
    SSP4, 992 
    STLT, 993 
    STNE, 994 
    SU, 995 
    SUVOS, 996 
    SVP4, 997 
    SYM, 998 
    TCSD, 999 
    TD4, 1000 
    TDEE6, 1001 
    TDSSE, 1002 
    TIS, 1003 
    TIVS, 1004 
    TKAP, 1005 
    TLC, 1006 
    TM, 1007 
    TMP, 1008 
    TOV, 1009 
    TREM, 1010 
    TTS, 1011 
    UM3, 1012 
    UPM, 1013 
    US, 1014 
    USR, 1015 
    VA, 1016 
    VESE, 1017 
    VFS, 1018 
    VFSAD, 1019 
    VFSAI, 1020 
    VFSAL, 1021 
    VM4, 1022 
    VRC4, 1023 
    VRP2, 1024 
    VSCV, 1025 
    VSF, 1026 
    VSIM5, 1027 
    VSIS, 1028 
    VSM, 1029 
                                                                          
                                                                          
    VSP, 1030 
    VSPUD, 1031 
    VSS, 1032 
    ZNDAB, 1033 
EXC (subsection, section B), 1034 
EXC (subsection, section CB), 1035 
EXC (subsection, section CF), 1036 
EXC (subsection, section CRS), 1037 
EXC (subsection, section D), 1038 
EXC (subsection, section DM), 1039 
EXC (subsection, section EE), 1040 
EXC (subsection, section F), 1041 
EXC (subsection, section FS), 1042 
EXC (subsection, section HP), 1043 
EXC (subsection, section HSE), 1044 
EXC (subsection, section ILT), 1045 
EXC (subsection, section IS), 1046 
EXC (subsection, section IVLT), 1047 
EXC (subsection, section LC), 1048 
EXC (subsection, section LDS), 1049 
EXC (subsection, section LI), 1050 
EXC (subsection, section LISS), 1051 
EXC (subsection, section LT), 1052 
EXC (subsection, section MINM), 1053 
EXC (subsection, section MISLE), 1054 
EXC (subsection, section MM), 1055 
EXC (subsection, section MO), 1056 
EXC (subsection, section MR), 1057 
EXC (subsection, section NM), 1058 
EXC (subsection, section O), 1059 
EXC (subsection, section PD), 1060 
EXC (subsection, section PDM), 1061 
EXC (subsection, section PEE), 1062 
EXC (subsection, section PSM), 1063 
EXC (subsection, section RREF), 1064 
EXC (subsection, section S), 1065 
EXC (subsection, section SD), 1066 
EXC (subsection, section SLT), 1067 
                                                                          
                                                                          
EXC (subsection, section SS), 1068 
EXC (subsection, section SSLE), 1069 
EXC (subsection, section T), 1070 
EXC (subsection, section TSS), 1071 
EXC (subsection, section VO), 1072 
EXC (subsection, section VR), 1073 
EXC (subsection, section VS), 1074 
EXC (subsection, section WILA), 1075 
extended echelon form 
    submatrices 
        example SEEF, 1076 
extended reduced row-echelon form 
    properties 
        theorem PEEF, 1077 
F (archetype), 1078 
F (definition), 1079 
F (section), 1080 
F (subsection, section F), 1081 
FDV (example), 1082 
FF (subsection, section F), 1083 
FF8 (example), 1084 
Fibonacci sequence 
    example FSCF, 1085 
field 
    definition F, 1086 
FIMP (theorem), 1087 
finite field 
    size 8 
        example FF8, 1088 
four subsets 
    example FS1, 1089 
    example FS2, 1090 
four subspaces 
    dimension 
        theorem DFS, 1091 
FRAN (example), 1092 
                                                                          
                                                                          
free variables 
    example CFV, 1093 
free variables, number 
    theorem FVCS, 1094 
free, independent variables 
    example FDV, 1095 
FS (section), 1096 
FS (subsection, section FS), 1097 
FS (subsection, section SD), 1098 
FS (theorem), 1099 
FS1 (example), 1100 
FS2 (example), 1101 
FSAG (example), 1102 
FSCF (example), 1103 
FTMR (diagram), 1104 
FTMR (theorem), 1105 
FTMRA (diagram), 1106 
FV (subsection, section TSS), 1107 
FVCS (theorem), 1108 
G (archetype), 1109 
G (theorem), 1110 
GE4 (example), 1111 
GE6 (example), 1112 
GEE (subsection, section IS), 1113 
GEK (theorem), 1114 
generalized eigenspace 
    as kernel 
        theorem GEK, 1115 
    definition GES, 1116 
    dimension 
        theorem DGES, 1117 
    dimension 4 domain 
        example GE4, 1118 
    dimension 6 domain 
        example GE6, 1119 
    invariant subspace 
                                                                          
                                                                          
        theorem GESIS, 1120 
    nilpotent restriction 
        theorem RGEN, 1121 
    nilpotent restrictions, dimension 6 domain 
        example GENR6, 1122 
    notation, 1123 
generalized eigenspace decomposition 
    theorem GESD, 1124 
generalized eigenvector 
    definition GEV, 1125 
GENR6 (example), 1126 
GES (definition), 1127 
GES (notation), 1128 
GESD (subsection, section JCF), 1129 
GESD (theorem), 1130 
GESIS (theorem), 1131 
GEV (definition), 1132 
GFDL (appendix), 1133 
GLT (diagram), 1134 
GME (definition), 1135 
GME (notation), 1136 
goldilocks 
    theorem G, 1137 
Gram-Schmidt 
    column vectors 
        theorem GSP, 1138 
    three vectors 
        example GSTV, 1139 
gram-schmidt 
    mathematica, 1140 
GS (technique, section PT), 1141 
GSP (subsection, section O), 1142 
GSP (theorem), 1143 
GSP.MMA (computation, section MMA), 1144 
GSTV (example), 1145 
GT (subsection, section PD), 1146 
H (archetype), 1147 
                                                                          
                                                                          
Hadamard Identity 
    notation, 1148 
Hadamard identity 
    definition HID, 1149 
Hadamard Inverse 
    notation, 1150 
Hadamard inverse 
    definition HI, 1151 
Hadamard Product 
    Diagonalizable Matrices 
        theorem DMHP, 1152 
    notation, 1153 
Hadamard product 
    commutativity 
        theorem HPC, 1154 
    definition HP, 1155 
    diagonal matrices 
        theorem DMMP, 1156 
    distributivity 
        theorem HPDAA, 1157 
    example HP, 1158 
    identity 
        theorem HPHID, 1159 
    inverse 
        theorem HPHI, 1160 
    scalar matrix multiplication 
        theorem HPSMM, 1161 
hermitian 
    definition HM, 1162 
Hermitian matrix 
    inner product 
        theorem HMIP, 1163 
HI (definition), 1164 
HI (notation), 1165 
HID (definition), 1166 
HID (notation), 1167 
HISAA (example), 1168 
                                                                          
                                                                          
HISAD (example), 1169 
HM (definition), 1170 
HM (subsection, section MM), 1171 
HMEM5 (example), 1172 
HMIP (theorem), 1173 
HMOE (theorem), 1174 
HMRE (theorem), 1175 
HMVEI (theorem), 1176 
homogeneous system 
    Archetype C 
        example AHSAC, 1177 
    consistent 
        theorem HSC, 1178 
    definition HS, 1179 
    infinitely many solutions 
        theorem HMVEI, 1180 
homogeneous systems 
    linear independence, 1181 
HP (definition), 1182 
HP (example), 1183 
HP (notation), 1184 
HP (section), 1185 
HPC (theorem), 1186 
HPDAA (theorem), 1187 
HPDM (example), 1188 
HPHI (theorem), 1189 
HPHID (theorem), 1190 
HPSMM (theorem), 1191 
HS (definition), 1192 
HSC (theorem), 1193 
HSE (section), 1194 
HUSAB (example), 1195 
I (archetype), 1196 
I (technique, section PT), 1197 
IAP (example), 1198 
IAR (example), 1199 
                                                                          
                                                                          
IAS (example), 1200 
IAV (example), 1201 
ICBM (theorem), 1202 
ICLT (theorem), 1203 
identities 
    technique PI, 1204 
identity matrix 
    determinant, 1205 
    example IM, 1206 
    notation, 1207 
IDLT (definition), 1208 
IDV (definition), 1209 
IE (definition), 1210 
IE (notation), 1211 
IFDVS (theorem), 1212 
IILT (theorem), 1213 
ILT (definition), 1214 
ILT (diagram), 1215 
ILT (section), 1216 
ILTB (theorem), 1217 
ILTD (subsection, section ILT), 1218 
ILTD (theorem), 1219 
ILTIS (theorem), 1220 
ILTLI (subsection, section ILT), 1221 
ILTLI (theorem), 1222 
ILTLT (theorem), 1223 
ILTVR (example), 1224 
IM (definition), 1225 
IM (example), 1226 
IM (notation), 1227 
IM (subsection, section MISLE), 1228 
IM11 (example), 1229 
IMILT (theorem), 1230 
IMP (definition), 1231 
IMR (theorem), 1232 
inconsistent linear systems 
    theorem ISRN, 1233 
independent, dependent variables 
                                                                          
                                                                          
    definition IDV, 1234 
indesxstring 
    example SM2Z7, 1235 
    example SSET, 1236 
index 
    eigenvalue 
        definition IE, 1237 
        notation, 1238 
indexstring 
    theorem DRCMA, 1239 
    theorem OBUTR, 1240 
    theorem UMCOB, 1241 
induction 
    technique I, 1242 
infinite solution set 
    example ISSI, 1243 
infinite solutions, 3 × 4 
    example IS, 1244 
injective 
    example IAP, 1245 
    example IAR, 1246 
    not 
        example NIAO, 1247 
        example NIAQ, 1248 
        example NIAQR, 1249 
    not, by dimension 
        example NIDAU, 1250 
    polynomials to matrices 
        example IAV, 1251 
injective linear transformation 
    bases 
        theorem ILTB, 1252 
injective linear transformations 
    dimension 
        theorem ILTD, 1253 
inner product 
    anti-commutative 
        theorem IPAC, 1254 
                                                                          
                                                                          
    example CSIP, 1255 
    norm 
        theorem IPN, 1256 
    notation, 1257 
    positive 
        theorem PIP, 1258 
    scalar multiplication 
        theorem IPSM, 1259 
    vector addition 
        theorem IPVA, 1260 
integers 
    mod p 
        definition IMP, 1261 
    mod p, field 
        theorem FIMP, 1262 
    mod 11 
        example IM11, 1263 
interpolating polynomial 
    theorem IP, 1264 
invariant subspace 
    definition IS, 1265 
    eigenspace, 1266 
    eigenspaces 
        example EIS, 1267 
    example TIS, 1268 
    Jordan block 
        example ISJB, 1269 
    kernels of powers 
        theorem KPIS, 1270 
inverse 
    composition of linear transformations 
        theorem ICLT, 1271 
    example CMI, 1272 
    example MI, 1273 
    notation, 1274 
    of a matrix, 1275 
invertible linear transformation 
    defined by invertible matrix 
                                                                          
                                                                          
        theorem IMILT, 1276 
invertible linear transformations 
    composition 
        theorem CIVLT, 1277 
    computing 
        example CIVLT, 1278 
IP (definition), 1279 
IP (notation), 1280 
IP (subsection, section O), 1281 
IP (theorem), 1282 
IPAC (theorem), 1283 
IPN (theorem), 1284 
IPSM (theorem), 1285 
IPVA (theorem), 1286 
IS (definition), 1287 
IS (example), 1288 
IS (section), 1289 
IS (subsection, section IS), 1290 
ISJB (example), 1291 
ISMR4 (example), 1292 
ISMR6 (example), 1293 
isomorphic 
    multiple vector spaces 
        example MIVS, 1294 
    vector spaces 
        example IVSAV, 1295 
isomorphic vector spaces 
    dimension 
        theorem IVSED, 1296 
    example TIVS, 1297 
ISRN (theorem), 1298 
ISSI (example), 1299 
ITMT (theorem), 1300 
IV (subsection, section IVLT), 1301 
IVLT (definition), 1302 
IVLT (section), 1303 
IVLT (subsection, section IVLT), 1304 
IVLT (subsection, section MR), 1305 
                                                                          
                                                                          
IVS (definition), 1306 
IVSAV (example), 1307 
IVSED (theorem), 1308 
J (archetype), 1309 
JB (definition), 1310 
JB (notation), 1311 
JB4 (example), 1312 
JCF (definition), 1313 
JCF (section), 1314 
JCF (subsection, section JCF), 1315 
JCF10 (example), 1316 
JCFLT (theorem), 1317 
Jordan block 
    definition JB, 1318 
    nilpotent 
        theorem NJB, 1319 
    notation, 1320 
    size 4 
        example JB4, 1321 
Jordan canonical form 
    definition JCF, 1322 
    size 10 
        example JCF10, 1323 
K (archetype), 1324 
kernel 
    injective linear transformation 
        theorem KILT, 1325 
    isomorphic to null space 
        theorem KNSI, 1326 
    linear transformation 
        example NKAO, 1327 
    notation, 1328 
    of a linear transformation 
        definition KLT, 1329 
                                                                          
                                                                          
    pre-image, 1330 
    subspace 
        theorem KLTS, 1331 
    trivial 
        example TKAP, 1332 
    via matrix representation 
        example KVMR, 1333 
KILT (theorem), 1334 
KLT (definition), 1335 
KLT (notation), 1336 
KLT (subsection, section ILT), 1337 
KLTS (theorem), 1338 
KNSI (theorem), 1339 
KPI (theorem), 1340 
KPIS (theorem), 1341 
KPLT (theorem), 1342 
KPNLT (example), 1343 
KPNLT (theorem), 1344 
KVMR (example), 1345 
L (archetype), 1346 
L (technique, section PT), 1347 
LA (subsection, section WILA), 1348 
LC (definition), 1349 
LC (section), 1350 
LC (subsection, section LC), 1351 
LC (technique, section PT), 1352 
LCCV (definition), 1353 
LCM (example), 1354 
LDCAA (example), 1355 
LDHS (example), 1356 
LDP4 (example), 1357 
LDRN (example), 1358 
LDS (example), 1359 
LDS (section), 1360 
LDSS (subsection, section LDS), 1361 
least squares 
                                                                          
                                                                          
    minimizes residuals 
        theorem LSMR, 1362 
least squares solution 
    definition LSS, 1363 
left null space 
    as row space, 1364 
    definition LNS, 1365 
    example LNS, 1366 
    notation, 1367 
    subspace 
        theorem LNSMS, 1368 
lemma 
    technique LC, 1369 
LI (definition), 1370 
LI (section), 1371 
LI (subsection, section LISS), 1372 
LIC (example), 1373 
LICAB (example), 1374 
LICV (definition), 1375 
LIHS (example), 1376 
LIM32 (example), 1377 
linear combination 
    system of equations 
        example ABLC, 1378 
    definition LC, 1379 
    definition LCCV, 1380 
    example TLC, 1381 
    linear transformation, 1382 
    matrices 
        example LCM, 1383 
    system of equations 
        example AALC, 1384 
linear combinations 
    solutions to linear systems 
        theorem SLSLC, 1385 
linear dependence 
    more vectors than size 
        theorem MVSLD, 1386 
                                                                          
                                                                          
linear independence 
    definition LI, 1387 
    definition LICV, 1388 
    homogeneous systems 
        theorem LIVHS, 1389 
    injective linear transformation 
        theorem ILTLI, 1390 
    matrices 
        example LIM32, 1391 
    orthogonal, 1392 
    r and n 
        theorem LIVRN, 1393 
linear solve 
    mathematica, 1394 
    sage, 1395 
linear system 
    consistent 
        theorem RCLS, 1396 
    matrix representation 
        definition MRLS, 1397 
        notation, 1398 
linear systems 
    notation 
        example MNSLE, 1399 
        example NSLE, 1400 
linear transformation 
    polynomials to polynomials 
        example LTPP, 1401 
    addition 
        definition LTA, 1402 
        theorem MLTLT, 1403 
        theorem SLTLT, 1404 
    as matrix multiplication 
        example ALTMM, 1405 
    basis of range 
        example BRLT, 1406 
    checking 
        example ALT, 1407 
                                                                          
                                                                          
    composition 
        definition LTC, 1408 
        theorem CLTLT, 1409 
    defined by a matrix 
        example LTM, 1410 
    defined on a basis 
        example LTDB1, 1411 
        example LTDB2, 1412 
        example LTDB3, 1413 
        theorem LTDB, 1414 
    definition LT, 1415 
    identity 
        definition IDLT, 1416 
    injection 
        definition ILT, 1417 
    inverse 
        theorem ILTLT, 1418 
    inverse of inverse 
        theorem IILT, 1419 
    invertible 
        definition IVLT, 1420 
        example AIVLT, 1421 
    invertible, injective and surjective 
        theorem ILTIS, 1422 
    Jordan canonical form 
        theorem JCFLT, 1423 
    kernels of powers 
        theorem KPLT, 1424 
    linear combination 
        theorem LTLC, 1425 
    matrix of, 1426 
        example MFLT, 1427 
        example MOLT, 1428 
    not 
        example NLT, 1429 
    not invertible 
        example ANILT, 1430 
    notation, 1431 
                                                                          
                                                                          
    polynomials to matrices 
        example LTPM, 1432 
    rank plus nullity 
        theorem RPNDD, 1433 
    restriction 
        definition LTR, 1434 
        notation, 1435 
    scalar multiple 
        example SMLT, 1436 
    scalar multiplication 
        definition LTSM, 1437 
    spanning range 
        theorem SSRLT, 1438 
    sum 
        example STLT, 1439 
    surjection 
        definition SLT, 1440 
    vector space of, 1441 
    zero vector 
        theorem LTTZZ, 1442 
linear transformation inverse 
    via matrix representation 
        example ILTVR, 1443 
linear transformation restriction 
    on generalized eigenspace 
        example LTRGE, 1444 
linear transformations 
    compositions 
        example CTLT, 1445 
    from matrices 
        theorem MBLT, 1446 
linearly dependent 
    r < n 
        example LDRN, 1447 
    via homogeneous system 
        example LDHS, 1448 
linearly dependent columns 
    Archetype A 
                                                                          
                                                                          
        example LDCAA, 1449 
linearly dependent set 
    example LDS, 1450 
    linear combinations within 
        theorem DLDS, 1451 
    polynomials 
        example LDP4, 1452 
linearly independent 
    crazy vector space 
        example LIC, 1453 
    extending sets 
        theorem ELIS, 1454 
    polynomials 
        example LIP4, 1455 
    via homogeneous system 
        example LIHS, 1456 
linearly independent columns 
    Archetype B 
        example LICAB, 1457 
linearly independent set 
    example LIS, 1458 
    example LLDS, 1459 
LINM (subsection, section LI), 1460 
LINSB (example), 1461 
LIP4 (example), 1462 
LIS (example), 1463 
LISS (section), 1464 
LISV (subsection, section LI), 1465 
LIVHS (theorem), 1466 
LIVRN (theorem), 1467 
LLDS (example), 1468 
LNS (definition), 1469 
LNS (example), 1470 
LNS (notation), 1471 
LNS (subsection, section FS), 1472 
LNSMS (theorem), 1473 
lower triangular matrix 
    definition LTM, 1474 
                                                                          
                                                                          
LS.MMA (computation, section MMA), 1475 
LS.SAGE (computation, section SAGE), 1476 
LSMR (theorem), 1477 
LSS (definition), 1478 
LT (acronyms, section IVLT), 1479 
LT (chapter), 1480 
LT (definition), 1481 
LT (notation), 1482 
LT (section), 1483 
LT (subsection, section LT), 1484 
LTA (definition), 1485 
LTC (definition), 1486 
LTC (subsection, section LT), 1487 
LTDB (theorem), 1488 
LTDB1 (example), 1489 
LTDB2 (example), 1490 
LTDB3 (example), 1491 
LTLC (subsection, section LT), 1492 
LTLC (theorem), 1493 
LTM (definition), 1494 
LTM (example), 1495 
LTPM (example), 1496 
LTPP (example), 1497 
LTR (definition), 1498 
LTR (notation), 1499 
LTRGE (example), 1500 
LTSM (definition), 1501 
LTTZZ (theorem), 1502 
M (acronyms, section FS), 1503 
M (archetype), 1504 
M (chapter), 1505 
M (definition), 1506 
M (notation), 1507 
MA (definition), 1508 
MA (example), 1509 
MA (notation), 1510 
                                                                          
                                                                          
MACN (Property), 1511 
MAF (Property), 1512 
MAP (subsection, section SVD), 1513 
mathematica 
    gram-schmidt (computation), 1514 
    linear solve (computation), 1515 
    matrix entry (computation), 1516 
    matrix inverse (computation), 1517 
    matrix multiplication (computation), 1518 
    null space (computation), 1519 
    row reduce (computation), 1520 
    transpose of a matrix (computation), 1521 
    vector form of solutions (computation), 1522 
    vector linear combinations (computation), 1523 
mathematical language 
    technique L, 1524 
matrix 
    addition 
        definition MA, 1525 
        notation, 1526 
    augmented 
        definition AM, 1527 
    column space 
        definition CSM, 1528 
    complex conjugate 
        example CCM, 1529 
    definition M, 1530 
    equality 
        definition ME, 1531 
        notation, 1532 
    example AM, 1533 
    identity 
        definition IM, 1534 
    inverse 
        definition MI, 1535 
    nonsingular 
        definition NM, 1536 
    notation, 1537 
                                                                          
                                                                          
    of a linear transformation 
        theorem MLTCV, 1538 
    product 
        example PTM, 1539 
        example PTMEE, 1540 
    product with vector 
        definition MVP, 1541 
    rectangular, 1542 
    row space 
        definition RSM, 1543 
    scalar multiplication 
        definition MSM, 1544 
        notation, 1545 
    singular, 1546 
    square 
        definition SQM, 1547 
    submatrices 
        example SS, 1548 
    submatrix 
        definition SM, 1549 
    symmetric 
        definition SYM, 1550 
    transpose 
        definition TM, 1551 
    unitary 
        definition UM, 1552 
    unitary is invertible 
        theorem UMI, 1553 
    zero 
        definition ZM, 1554 
matrix addition 
    example MA, 1555 
matrix components 
    notation, 1556 
matrix entry 
    mathematica, 1557 
    sage, 1558 
    ti83, 1559 
                                                                          
                                                                          
    ti86, 1560 
matrix inverse 
    Archetype B, 1561 
    computation 
        theorem CINM, 1562 
    mathematica, 1563 
    nonsingular matrix 
        theorem NI, 1564 
    of a matrix inverse 
        theorem MIMI, 1565 
    one-sided 
        theorem OSIS, 1566 
    product 
        theorem SS, 1567 
    sage, 1568 
    scalar multiple 
        theorem MISM, 1569 
    size 2 matrices 
        theorem TTMI, 1570 
    transpose 
        theorem MIT, 1571 
    uniqueness 
        theorem MIU, 1572 
matrix multiplication 
    adjoints 
        theorem MMAD, 1573 
    associativity 
        theorem MMA, 1574 
    complex conjugation 
        theorem MMCC, 1575 
    definition MM, 1576 
    distributivity 
        theorem MMDAA, 1577 
    entry-by-entry 
        theorem EMP, 1578 
    identity matrix 
        theorem MMIM, 1579 
    inner product 
                                                                          
                                                                          
        theorem MMIP, 1580 
    mathematica, 1581 
    noncommutative 
        example MMNC, 1582 
    scalar matrix multiplication 
        theorem MMSMM, 1583 
    systems of linear equations 
        theorem SLEMM, 1584 
    transposes 
        theorem MMT, 1585 
    zero matrix 
        theorem MMZM, 1586 
matrix product 
    as composition of linear transformations 
        example MPMR, 1587 
matrix representation 
    basis of eigenvectors 
        example MRBE, 1588 
    composition of linear transformations 
        theorem MRCLT, 1589 
    definition MR, 1590 
    invertible 
        theorem IMR, 1591 
    multiple of a linear transformation 
        theorem MRMLT, 1592 
    notation, 1593 
    restriction to generalized eigenspace 
        theorem MRRGE, 1594 
    sum of linear transformations 
        theorem MRSLT, 1595 
    theorem FTMR, 1596 
    upper triangular 
        theorem UTMR, 1597 
matrix representations 
    converting with change-of-basis 
        example MRCM, 1598 
    example OLTTR, 1599 
matrix scalar multiplication 
                                                                          
                                                                          
    example MSM, 1600 
matrix vector space 
    dimension 
        theorem DM, 1601 
matrix-adjoint product 
    eigenvalues, eigenvectors 
        theorem EEMAP, 1602 
matrix-vector product 
    example MTV, 1603 
    notation, 1604 
MBC (example), 1605 
MBLT (theorem), 1606 
MC (notation), 1607 
MCC (subsection, section MO), 1608 
MCCN (Property), 1609 
MCF (Property), 1610 
MCN (definition), 1611 
MCN (subsection, section CNO), 1612 
MCSM (example), 1613 
MCT (theorem), 1614 
MD (chapter), 1615 
ME (definition), 1616 
ME (notation), 1617 
ME (subsection, section PEE), 1618 
ME (technique, section PT), 1619 
ME (theorem), 1620 
ME.MMA (computation, section MMA), 1621 
ME.SAGE (computation, section SAGE), 1622 
ME.TI83 (computation, section TI83), 1623 
ME.TI86 (computation, section TI86), 1624 
MEASM (subsection, section MO), 1625 
MFLT (example), 1626 
MI (definition), 1627 
MI (example), 1628 
MI (notation), 1629 
MI.MMA (computation, section MMA), 1630 
MI.SAGE (computation, section SAGE), 1631 
MICN (Property), 1632 
                                                                          
                                                                          
MIF (Property), 1633 
MIMI (theorem), 1634 
MINM (section), 1635 
MISLE (section), 1636 
MISM (theorem), 1637 
MIT (theorem), 1638 
MIU (theorem), 1639 
MIVS (example), 1640 
MLT (subsection, section LT), 1641 
MLTCV (theorem), 1642 
MLTLT (theorem), 1643 
MM (definition), 1644 
MM (section), 1645 
MM (subsection, section MM), 1646 
MM.MMA (computation, section MMA), 1647 
MMA (section), 1648 
MMA (theorem), 1649 
MMAD (theorem), 1650 
MMCC (theorem), 1651 
MMDAA (theorem), 1652 
MMEE (subsection, section MM), 1653 
MMIM (theorem), 1654 
MMIP (theorem), 1655 
MMNC (example), 1656 
MMSMM (theorem), 1657 
MMT (theorem), 1658 
MMZM (theorem), 1659 
MNEM (theorem), 1660 
MNSLE (example), 1661 
MO (section), 1662 
MOLT (example), 1663 
more variables than equations 
    example OSGMD, 1664 
    theorem CMVEI, 1665 
MPMR (example), 1666 
MR (definition), 1667 
MR (notation), 1668 
MR (section), 1669 
                                                                          
                                                                          
MRBE (example), 1670 
MRCB (theorem), 1671 
MRCLT (diagram), 1672 
MRCLT (theorem), 1673 
MRCM (example), 1674 
MRLS (definition), 1675 
MRLS (notation), 1676 
MRMLT (theorem), 1677 
MRRGE (theorem), 1678 
MRS (subsection, section CB), 1679 
MRSLT (theorem), 1680 
MSCN (example), 1681 
MSM (definition), 1682 
MSM (example), 1683 
MSM (notation), 1684 
MTV (example), 1685 
multiplicative associativity 
    complex numbers 
        Property MACN, 1686 
multiplicative closure 
    complex numbers 
        Property MCCN, 1687 
    field 
        Property MCF, 1688 
multiplicative commutativity 
    complex numbers 
        Property CMCN, 1689 
multiplicative inverse 
    complex numbers 
        Property MICN, 1690 
MVNSE (subsection, section RREF), 1691 
MVP (definition), 1692 
MVP (notation), 1693 
MVP (subsection, section MM), 1694 
MVSLD (theorem), 1695 
MWIAA (example), 1696 
N (archetype), 1697 
                                                                          
                                                                          
N (subsection, section O), 1698 
N (technique, section PT), 1699 
NDMS4 (example), 1700 
negation of statements 
    technique N, 1701 
NEM (theorem), 1702 
NI (theorem), 1703 
NIAO (example), 1704 
NIAQ (example), 1705 
NIAQR (example), 1706 
NIDAU (example), 1707 
nilpotent 
    linear transformation 
        definition NLT, 1708 
NILT (diagram), 1709 
NJB (theorem), 1710 
NJB5 (example), 1711 
NKAO (example), 1712 
NLT (definition), 1713 
NLT (example), 1714 
NLT (section), 1715 
NLT (subsection, section NLT), 1716 
NLTFO (subsection, section LT), 1717 
NM (definition), 1718 
NM (example), 1719 
NM (section), 1720 
NM (subsection, section NM), 1721 
NM (subsection, section OD), 1722 
NM62 (example), 1723 
NM64 (example), 1724 
NM83 (example), 1725 
NME1 (theorem), 1726 
NME2 (theorem), 1727 
NME3 (theorem), 1728 
NME4 (theorem), 1729 
NME5 (theorem), 1730 
NME6 (theorem), 1731 
                                                                          
                                                                          
NME7 (theorem), 1732 
NME8 (theorem), 1733 
NME9 (theorem), 1734 
NMI (subsection, section MINM), 1735 
NMLIC (theorem), 1736 
NMPEM (theorem), 1737 
NMRRI (theorem), 1738 
NMTNS (theorem), 1739 
NMUS (theorem), 1740 
NOILT (theorem), 1741 
NOLT (definition), 1742 
NOLT (notation), 1743 
NOM (definition), 1744 
NOM (notation), 1745 
nonsingular 
    columns as basis 
        theorem CNMB, 1746 
nonsingular matrices 
    linearly independent columns 
        theorem NMLIC, 1747 
nonsingular matrix 
    Archetype B 
        example NM, 1748 
    column space, 1749 
    elementary matrices 
        theorem NMPEM, 1750 
    equivalences 
        theorem NME1, 1751 
        theorem NME2, 1752 
        theorem NME3, 1753 
        theorem NME4, 1754 
        theorem NME5, 1755 
        theorem NME6, 1756 
        theorem NME7, 1757 
        theorem NME8, 1758 
        theorem NME9, 1759 
    matrix inverse, 1760 
    null space 
                                                                          
                                                                          
        example NSNM, 1761 
    nullity, 1762 
    product of nonsingular matrices 
        theorem NPNT, 1763 
    rank 
        theorem RNNM, 1764 
    row-reduced 
        theorem NMRRI, 1765 
    trivial null space 
        theorem NMTNS, 1766 
    unique solutions 
        theorem NMUS, 1767 
nonsingular matrix, row-reduced 
    example NSR, 1768 
norm 
    example CNSV, 1769 
    inner product, 1770 
    notation, 1771 
normal matrix 
    definition NRML, 1772 
    example ANM, 1773 
    orthonormal basis, 1774 
notation 
    A, 1775 
    AM, 1776 
    AME, 1777 
    C, 1778 
    CCCV, 1779 
    CCM, 1780 
    CCN, 1781 
    CNA, 1782 
    CNE, 1783 
    CNM, 1784 
    CSM, 1785 
    CV, 1786 
    CVA, 1787 
    CVC, 1788 
    CVE, 1789 
                                                                          
                                                                          
    CVSM, 1790 
    D, 1791 
    DM, 1792 
    DS, 1793 
    ELEM, 1794 
    ES, 1795 
    GES, 1796 
    GME, 1797 
    HI, 1798 
    HID, 1799 
    HP, 1800 
    IE, 1801 
    IM, 1802 
    IP, 1803 
    JB, 1804 
    KLT, 1805 
    LNS, 1806 
    LT, 1807 
    LTR, 1808 
    M, 1809 
    MA, 1810 
    MC, 1811 
    ME, 1812 
    MI, 1813 
    MR, 1814 
    MRLS, 1815 
    MSM, 1816 
    MVP, 1817 
    NOLT, 1818 
    NOM, 1819 
    NSM, 1820 
    NV, 1821 
    RLT, 1822 
    RO, 1823 
    ROLT, 1824 
    ROM, 1825 
    RREFA, 1826 
    RSM, 1827 
                                                                          
                                                                          
    SC, 1828 
    SE, 1829 
    SETM, 1830 
    SI, 1831 
    SM, 1832 
    SRM, 1833 
    SSET, 1834 
    SSV, 1835 
    SU, 1836 
    SUV, 1837 
    T, 1838 
    TM, 1839 
    VR, 1840 
    VSCV, 1841 
    VSM, 1842 
    ZCV, 1843 
    ZM, 1844 
notation for a linear system 
    example NSE, 1845 
NPNT (theorem), 1846 
NRFO (subsection, section MR), 1847 
NRML (definition), 1848 
NRREF (example), 1849 
NS.MMA (computation, section MMA), 1850 
NSAO (example), 1851 
NSAQ (example), 1852 
NSAQR (example), 1853 
NSC2A (example), 1854 
NSC2S (example), 1855 
NSC2Z (example), 1856 
NSDAT (example), 1857 
NSDS (example), 1858 
NSE (example), 1859 
NSEAI (example), 1860 
NSLE (example), 1861 
NSLIL (example), 1862 
NSM (definition), 1863 
NSM (notation), 1864 
                                                                          
                                                                          
NSM (subsection, section HSE), 1865 
NSMS (theorem), 1866 
NSNM (example), 1867 
NSNM (subsection, section NM), 1868 
NSR (example), 1869 
NSS (example), 1870 
NSSLI (subsection, section LI), 1871 
Null space 
    as a span 
        example NSDS, 1872 
null space 
    Archetype I 
        example NSEAI, 1873 
    basis 
        theorem BNS, 1874 
    computation 
        example CNS1, 1875 
        example CNS2, 1876 
    isomorphic to kernel, 1877 
    linearly independent basis 
        example LINSB, 1878 
    mathematica, 1879 
    matrix 
        definition NSM, 1880 
    nonsingular matrix, 1881 
    notation, 1882 
    singular matrix, 1883 
    spanning set 
        example SSNS, 1884 
        theorem SSNS, 1885 
    subspace 
        theorem NSMS, 1886 
null space span, linearly independent 
    Archetype L 
        example NSLIL, 1887 
nullity 
    computing, 1888 
    injective linear transformation 
                                                                          
                                                                          
        theorem NOILT, 1889 
    linear transformation 
        definition NOLT, 1890 
    matrix, 1891 
        definition NOM, 1892 
    notation, 1893, 1894 
    square matrix, 1895 
NV (definition), 1896 
NV (notation), 1897 
NVM (theorem), 1898 
O (archetype), 1899 
O (Property), 1900 
O (section), 1901 
OBC (subsection, section B), 1902 
OBNM (theorem), 1903 
OBUTR (theorem), 1904 
OC (Property), 1905 
OCN (Property), 1906 
OD (section), 1907 
OD (subsection, section OD), 1908 
OD (theorem), 1909 
OF (Property), 1910 
OLTTR (example), 1911 
OM (Property), 1912 
one 
    column vectors 
        Property OC, 1913 
    complex numbers 
        Property OCN, 1914 
    field 
        Property OF, 1915 
    matrices 
        Property OM, 1916 
    vectors 
        Property O, 1917 
ONFV (example), 1918 
                                                                          
                                                                          
ONS (definition), 1919 
ONTV (example), 1920 
orthogonal 
    linear independence 
        theorem OSLI, 1921 
    set 
        example AOS, 1922 
    set of vectors 
        definition OSV, 1923 
    vector pairs 
        definition OV, 1924 
orthogonal vectors 
    example TOV, 1925 
orthonormal 
    definition ONS, 1926 
    matrix columns 
        example OSMC, 1927 
orthonormal basis 
    normal matrix 
        theorem OBNM, 1928 
orthonormal diagonalization 
    theorem OD, 1929 
orthonormal set 
    four vectors 
        example ONFV, 1930 
    three vectors 
        example ONTV, 1931 
OSGMD (example), 1932 
OSIS (theorem), 1933 
OSLI (theorem), 1934 
OSMC (example), 1935 
OSV (definition), 1936 
OV (definition), 1937 
OV (subsection, section O), 1938 
P (appendix), 1939 
P (archetype), 1940 
                                                                          
                                                                          
P (technique, section PT), 1941 
particular solutions 
    example PSHS, 1942 
PCNA (theorem), 1943 
PCVS (example), 1944 
PD (section), 1945 
PDM (section), 1946 
PDM (theorem), 1947 
PEE (section), 1948 
PEEF (theorem), 1949 
PI (definition), 1950 
PI (subsection, section LT), 1951 
PI (technique, section PT), 1952 
PIP (theorem), 1953 
PM (example), 1954 
PM (subsection, section EE), 1955 
PMI (subsection, section MISLE), 1956 
PMM (subsection, section MM), 1957 
PMR (subsection, section MR), 1958 
PNLT (subsection, section NLT), 1959 
POD (section), 1960 
polar decomposition 
    theorem PDM, 1961 
polynomial 
    of a matrix 
        example PM, 1962 
polynomial vector space 
    dimension 
        theorem DP, 1963 
positive semi-definite 
    creating 
        theorem CPSM, 1964 
positive semi-definite matrix 
    definition PSM, 1965 
    eigenvalues 
        theorem EPSM, 1966 
practice 
    technique P, 1967 
                                                                          
                                                                          
pre-image 
    definition PI, 1968 
    kernel 
        theorem KPI, 1969 
pre-images 
    example SPIAS, 1970 
principal axis theorem, 1971 
product of triangular matrices 
    theorem PTMT, 1972 
Property 
    AA, 1973 
    AAC, 1974 
    AACN, 1975 
    AAF, 1976 
    AAM, 1977 
    AC, 1978 
    ACC, 1979 
    ACCN, 1980 
    ACF, 1981 
    ACM, 1982 
    AI, 1983 
    AIC, 1984 
    AICN, 1985 
    AIF, 1986 
    AIM, 1987 
    C, 1988 
    CACN, 1989 
    CAF, 1990 
    CC, 1991 
    CM, 1992 
    CMCN, 1993 
    CMF, 1994 
    DCN, 1995 
    DF, 1996 
    DMAM, 1997 
    DSA, 1998 
    DSAC, 1999 
    DSAM, 2000 
                                                                          
                                                                          
    DVA, 2001 
    DVAC, 2002 
    MACN, 2003 
    MAF, 2004 
    MCCN, 2005 
    MCF, 2006 
    MICN, 2007 
    MIF, 2008 
    O, 2009 
    OC, 2010 
    OCN, 2011 
    OF, 2012 
    OM, 2013 
    SC, 2014 
    SCC, 2015 
    SCM, 2016 
    SMA, 2017 
    SMAC, 2018 
    SMAM, 2019 
    Z, 2020 
    ZC, 2021 
    ZCN, 2022 
    ZF, 2023 
    ZM, 2024 
PSHS (example), 2025 
PSHS (subsection, section LC), 2026 
PSM (definition), 2027 
PSM (section), 2028 
PSM (subsection, section PSM), 2029 
PSM (subsection, section SD), 2030 
PSMSR (theorem), 2031 
PSPHS (theorem), 2032 
PSS (subsection, section SSLE), 2033 
PSSD (theorem), 2034 
PSSLS (theorem), 2035 
PT (section), 2036 
PTFP (example), 2037 
PTM (example), 2038 
                                                                          
                                                                          
PTMEE (example), 2039 
PTMT (theorem), 2040 
Q (archetype), 2041 
R (acronyms, section JCF), 2042 
R (archetype), 2043 
R (chapter), 2044 
R.SAGE (computation, section SAGE), 2045 
range 
    full 
        example FRAN, 2046 
    isomorphic to column space 
        theorem RCSI, 2047 
    linear transformation 
        example RAO, 2048 
    notation, 2049 
    of a linear transformation 
        definition RLT, 2050 
    pre-image 
        theorem RPI, 2051 
    subspace 
        theorem RLTS, 2052 
    surjective linear transformation 
        theorem RSLT, 2053 
    via matrix representation 
        example RVMR, 2054 
rank 
    computing 
        theorem CRN, 2055 
    linear transformation 
        definition ROLT, 2056 
    matrix 
        definition ROM, 2057 
        example RNM, 2058 
    notation, 2059, 2060 
                                                                          
                                                                          
    of transpose 
        example RRTI, 2061 
    square matrix 
        example RNSM, 2062 
    surjective linear transformation 
        theorem ROSLT, 2063 
    transpose 
        theorem RMRT, 2064 
rank one decomposition 
    size 2 
        example ROD2, 2065 
    size 4 
        example ROD4, 2066 
    theorem ROD, 2067 
rank+nullity 
    theorem RPNC, 2068 
RAO (example), 2069 
RCLS (theorem), 2070 
RCSI (theorem), 2071 
RD (subsection, section VS), 2072 
RDS (theorem), 2073 
READ (subsection, section B), 2074 
READ (subsection, section CB), 2075 
READ (subsection, section CRS), 2076 
READ (subsection, section D), 2077 
READ (subsection, section DM), 2078 
READ (subsection, section EE), 2079 
READ (subsection, section FS), 2080 
READ (subsection, section HSE), 2081 
READ (subsection, section ILT), 2082 
READ (subsection, section IVLT), 2083 
READ (subsection, section LC), 2084 
READ (subsection, section LDS), 2085 
READ (subsection, section LI), 2086 
READ (subsection, section LISS), 2087 
READ (subsection, section LT), 2088 
READ (subsection, section MINM), 2089 
READ (subsection, section MISLE), 2090 
                                                                          
                                                                          
READ (subsection, section MM), 2091 
READ (subsection, section MO), 2092 
READ (subsection, section MR), 2093 
READ (subsection, section NM), 2094 
READ (subsection, section O), 2095 
READ (subsection, section PD), 2096 
READ (subsection, section PDM), 2097 
READ (subsection, section PEE), 2098 
READ (subsection, section RREF), 2099 
READ (subsection, section S), 2100 
READ (subsection, section SD), 2101 
READ (subsection, section SLT), 2102 
READ (subsection, section SS), 2103 
READ (subsection, section SSLE), 2104 
READ (subsection, section TSS), 2105 
READ (subsection, section VO), 2106 
READ (subsection, section VR), 2107 
READ (subsection, section VS), 2108 
READ (subsection, section WILA), 2109 
reduced row-echelon form 
    analysis 
        notation, 2110 
    definition RREF, 2111 
    example NRREF, 2112 
    example RREF, 2113 
    extended 
        definition EEF, 2114 
    notation 
        example RREFN, 2115 
    unique 
        theorem RREFU, 2116 
reducing a span 
    example RSC5, 2117 
relation of linear dependence 
    definition RLD, 2118 
    definition RLDCV, 2119 
REM (definition), 2120 
REMEF (theorem), 2121 
                                                                          
                                                                          
REMES (theorem), 2122 
REMRS (theorem), 2123 
RES (example), 2124 
RGEN (theorem), 2125 
rings 
    sage, 2126 
RLD (definition), 2127 
RLDCV (definition), 2128 
RLT (definition), 2129 
RLT (notation), 2130 
RLT (subsection, section IS), 2131 
RLT (subsection, section SLT), 2132 
RLTS (theorem), 2133 
RMRT (theorem), 2134 
RNLT (subsection, section IVLT), 2135 
RNM (example), 2136 
RNM (subsection, section D), 2137 
RNNM (subsection, section D), 2138 
RNNM (theorem), 2139 
RNSM (example), 2140 
RO (definition), 2141 
RO (notation), 2142 
RO (subsection, section RREF), 2143 
ROD (section), 2144 
ROD (theorem), 2145 
ROD2 (example), 2146 
ROD4 (example), 2147 
ROLT (definition), 2148 
ROLT (notation), 2149 
ROM (definition), 2150 
ROM (notation), 2151 
ROSLT (theorem), 2152 
row operations 
    definition RO, 2153 
    elementary matrices, 2154, 2155 
    notation, 2156 
row reduce 
    mathematica, 2157 
                                                                          
                                                                          
    sage, 2158 
    ti83, 2159 
    ti86, 2160 
row space 
    Archetype I 
        example RSAI, 2161 
    as column space, 2162 
    basis 
        example RSB, 2163 
        theorem BRS, 2164 
    matrix, 2165 
    notation, 2166 
    row-equivalent matrices 
        theorem REMRS, 2167 
    subspace 
        theorem RSMS, 2168 
row-equivalent matrices 
    definition REM, 2169 
    example TREM, 2170 
    row space, 2171 
    row spaces 
        example RSREM, 2172 
    theorem REMES, 2173 
row-reduce 
    the verb 
        definition RR, 2174 
row-reduced matrices 
    theorem REMEF, 2175 
RPI (theorem), 2176 
RPNC (theorem), 2177 
RPNDD (theorem), 2178 
RR (definition), 2179 
RR.MMA (computation, section MMA), 2180 
RR.SAGE (computation, section SAGE), 2181 
RR.TI83 (computation, section TI83), 2182 
RR.TI86 (computation, section TI86), 2183 
RREF (definition), 2184 
RREF (example), 2185 
                                                                          
                                                                          
RREF (section), 2186 
RREF (subsection, section RREF), 2187 
RREFA (notation), 2188 
RREFN (example), 2189 
RREFU (theorem), 2190 
RRTI (example), 2191 
RS (example), 2192 
RSAI (example), 2193 
RSB (example), 2194 
RSC4 (example), 2195 
RSC5 (example), 2196 
RSLT (theorem), 2197 
RSM (definition), 2198 
RSM (notation), 2199 
RSM (subsection, section CRS), 2200 
RSMS (theorem), 2201 
RSNS (example), 2202 
RSREM (example), 2203 
RT (subsection, section PD), 2204 
RVMR (example), 2205 
S (archetype), 2206 
S (definition), 2207 
S (example), 2208 
S (section), 2209 
SAA (example), 2210 
SAB (example), 2211 
SABMI (example), 2212 
SAE (example), 2213 
sage 
    eigenspaces (computation), 2214 
    linear solve (computation), 2215 
    matrix entry (computation), 2216 
    matrix inverse (computation), 2217 
    rings (computation), 2218 
    row reduce (computation), 2219 
    transpose of a matrix (computation), 2220 
                                                                          
                                                                          
    vector linear combinations (computation), 2221 
SAGE (section), 2222 
SAN (example), 2223 
SAR (example), 2224 
SAS (section), 2225 
SAV (example), 2226 
SC (definition), 2227 
SC (example), 2228 
SC (notation), 2229 
SC (Property), 2230 
SC (subsection, section S), 2231 
SC (subsection, section SET), 2232 
SC3 (example), 2233 
SCAA (example), 2234 
SCAB (example), 2235 
SCAD (example), 2236 
scalar closure 
    column vectors 
        Property SCC, 2237 
    matrices 
        Property SCM, 2238 
    vectors 
        Property SC, 2239 
scalar multiple 
    matrix inverse, 2240 
scalar multiplication 
    zero scalar 
        theorem ZSSM, 2241 
    zero vector 
        theorem ZVSM, 2242 
    zero vector result 
        theorem SMEZV, 2243 
scalar multiplication associativity 
    column vectors 
        Property SMAC, 2244 
    matrices 
        Property SMAM, 2245 
    vectors 
                                                                          
                                                                          
        Property SMA, 2246 
SCB (theorem), 2247 
SCC (Property), 2248 
SCM (Property), 2249 
SD (section), 2250 
SDS (example), 2251 
SE (definition), 2252 
SE (notation), 2253 
secret sharing 
    6 ways 
        example SS6W, 2254 
SEE (example), 2255 
SEEF (example), 2256 
SER (theorem), 2257 
set 
    cardinality 
        definition C, 2258 
        example CS, 2259 
        notation, 2260 
    complement 
        definition SC, 2261 
        example SC, 2262 
        notation, 2263 
    definition SET, 2264 
    empty 
        definition ES, 2265 
    equality 
        definition SE, 2266 
        notation, 2267 
    intersection 
        definition SI, 2268 
        example SI, 2269 
        notation, 2270 
    membership 
        example SETM, 2271 
        notation, 2272 
    size, 2273 
    subset, 2274 
                                                                          
                                                                          
    union 
        definition SU, 2275 
        example SU, 2276 
        notation, 2277 
SET (definition), 2278 
SET (section), 2279 
SETM (example), 2280 
SETM (notation), 2281 
shoes, 2282 
SHS (subsection, section HSE), 2283 
SI (definition), 2284 
SI (example), 2285 
SI (notation), 2286 
SI (subsection, section IVLT), 2287 
SIM (definition), 2288 
similar matrices 
    equal eigenvalues 
        example EENS, 2289 
    eual eigenvalues 
        theorem SMEE, 2290 
    example SMS3, 2291 
    example SMS5, 2292 
similarity 
    definition SIM, 2293 
    equivalence relation 
        theorem SER, 2294 
singular matrix 
    Archetype A 
        example S, 2295 
    null space 
        example NSS, 2296 
singular matrix, row-reduced 
    example SRR, 2297 
singular value decomposition 
    theorem SVD, 2298 
singular values 
    definition SV, 2299 
SLE (acronyms, section NM), 2300 
                                                                          
                                                                          
SLE (chapter), 2301 
SLE (definition), 2302 
SLE (subsection, section SSLE), 2303 
SLELT (subsection, section IVLT), 2304 
SLEMM (theorem), 2305 
SLSLC (theorem), 2306 
SLT (definition), 2307 
SLT (section), 2308 
SLTB (theorem), 2309 
SLTD (subsection, section SLT), 2310 
SLTD (theorem), 2311 
SLTLT (theorem), 2312 
SM (definition), 2313 
SM (notation), 2314 
SM (subsection, section SD), 2315 
SM2Z7 (example), 2316 
SM32 (example), 2317 
SMA (Property), 2318 
SMAC (Property), 2319 
SMAM (Property), 2320 
SMEE (theorem), 2321 
SMEZV (theorem), 2322 
SMLT (example), 2323 
SMS (theorem), 2324 
SMS3 (example), 2325 
SMS5 (example), 2326 
SMZD (theorem), 2327 
SMZE (theorem), 2328 
SNCM (theorem), 2329 
SO (subsection, section SET), 2330 
socks, 2331 
SOL (subsection, section B), 2332 
SOL (subsection, section CB), 2333 
SOL (subsection, section CRS), 2334 
SOL (subsection, section D), 2335 
SOL (subsection, section DM), 2336 
SOL (subsection, section EE), 2337 
SOL (subsection, section F), 2338 
                                                                          
                                                                          
SOL (subsection, section FS), 2339 
SOL (subsection, section HSE), 2340 
SOL (subsection, section ILT), 2341 
SOL (subsection, section IVLT), 2342 
SOL (subsection, section LC), 2343 
SOL (subsection, section LDS), 2344 
SOL (subsection, section LI), 2345 
SOL (subsection, section LISS), 2346 
SOL (subsection, section LT), 2347 
SOL (subsection, section MINM), 2348 
SOL (subsection, section MISLE), 2349 
SOL (subsection, section MM), 2350 
SOL (subsection, section MO), 2351 
SOL (subsection, section MR), 2352 
SOL (subsection, section NM), 2353 
SOL (subsection, section O), 2354 
SOL (subsection, section PD), 2355 
SOL (subsection, section PDM), 2356 
SOL (subsection, section PEE), 2357 
SOL (subsection, section RREF), 2358 
SOL (subsection, section S), 2359 
SOL (subsection, section SD), 2360 
SOL (subsection, section SLT), 2361 
SOL (subsection, section SS), 2362 
SOL (subsection, section SSLE), 2363 
SOL (subsection, section T), 2364 
SOL (subsection, section TSS), 2365 
SOL (subsection, section VO), 2366 
SOL (subsection, section VR), 2367 
SOL (subsection, section VS), 2368 
SOL (subsection, section WILA), 2369 
solution set 
    Archetype A 
        example SAA, 2370 
    archetype E 
        example SAE, 2371 
    theorem PSPHS, 2372 
solution set of a linear system 
                                                                          
                                                                          
    definition SSSLE, 2373 
solution sets 
    possibilities 
        theorem PSSLS, 2374 
solution to a linear system 
    definition SSLE, 2375 
solution vector 
    definition SOLV, 2376 
SOLV (definition), 2377 
solving homogeneous system 
    Archetype A 
        example HISAA, 2378 
    Archetype B 
        example HUSAB, 2379 
    Archetype D 
        example HISAD, 2380 
solving nonlinear equations 
    example STNE, 2381 
SP4 (example), 2382 
span 
    basic 
        example ABS, 2383 
    basis 
        theorem BS, 2384 
    definition SS, 2385 
    definition SSCV, 2386 
    improved 
        example IAS, 2387 
    notation, 2388 
    reducing 
        example RSC4, 2389 
    reduction 
        example RS, 2390 
    removing vectors 
        example COV, 2391 
    reworking elements 
        example RES, 2392 
    set of polynomials 
                                                                          
                                                                          
        example SSP, 2393 
    subspace 
        theorem SSS, 2394 
span of columns 
    Archetype A 
        example SCAA, 2395 
    Archetype B 
        example SCAB, 2396 
    Archetype D 
        example SCAD, 2397 
spanning set 
    crazy vector space 
        example SSC, 2398 
    definition TSVS, 2399 
    matrices 
        example SSM22, 2400 
    more vectors 
        theorem SSLD, 2401 
    polynomials 
        example SSP4, 2402 
SPIAS (example), 2403 
SQM (definition), 2404 
square root 
    eigenvalues, eigenspaces 
        theorem EESR, 2405 
    matrix 
        definition SRM, 2406 
        notation, 2407 
    positive semi-definite matrix 
        theorem PSMSR, 2408 
    unique 
        theorem USR, 2409 
SR (section), 2410 
SRM (definition), 2411 
SRM (notation), 2412 
SRM (subsection, section SR), 2413 
SRR (example), 2414 
SS (definition), 2415 
                                                                          
                                                                          
SS (example), 2416 
SS (section), 2417 
SS (subsection, section LISS), 2418 
SS (theorem), 2419 
SS6W (example), 2420 
SSC (example), 2421 
SSCV (definition), 2422 
SSET (definition), 2423 
SSET (example), 2424 
SSET (notation), 2425 
SSLD (theorem), 2426 
SSLE (definition), 2427 
SSLE (section), 2428 
SSM22 (example), 2429 
SSNS (example), 2430 
SSNS (subsection, section SS), 2431 
SSNS (theorem), 2432 
SSP (example), 2433 
SSP4 (example), 2434 
SSRLT (theorem), 2435 
SSS (theorem), 2436 
SSSLE (definition), 2437 
SSSLT (subsection, section SLT), 2438 
SSV (notation), 2439 
SSV (subsection, section SS), 2440 
standard unit vector 
    notation, 2441 
starting proofs 
    technique GS, 2442 
STLT (example), 2443 
STNE (example), 2444 
SU (definition), 2445 
SU (example), 2446 
SU (notation), 2447 
submatrix 
    notation, 2448 
subset 
    definition SSET, 2449 
                                                                          
                                                                          
    notation, 2450 
subspace 
    as null space 
        example RSNS, 2451 
    characterized 
        example ASC, 2452 
    definition S, 2453 
    in {P}_{4} 
        example SP4, 2454 
    not, additive closure 
        example NSC2A, 2455 
    not, scalar closure 
        example NSC2S, 2456 
    not, zero vector 
        example NSC2Z, 2457 
    testing 
        theorem TSS, 2458 
    trivial 
        definition TS, 2459 
    verification 
        example SC3, 2460 
        example SM32, 2461 
subspaces 
    equal dimension 
        theorem EDYES, 2462 
surjective 
    Archetype N 
        example SAN, 2463 
    example SAR, 2464 
    not 
        example NSAQ, 2465 
        example NSAQR, 2466 
    not, Archetype O 
        example NSAO, 2467 
    not, by dimension 
        example NSDAT, 2468 
    polynomials to matrices 
        example SAV, 2469 
                                                                          
                                                                          
surjective linear transformation 
    bases 
        theorem SLTB, 2470 
surjective linear transformations 
    dimension 
        theorem SLTD, 2471 
SUV (definition), 2472 
SUV (notation), 2473 
SUVB (theorem), 2474 
SUVOS (example), 2475 
SV (definition), 2476 
SVD (section), 2477 
SVD (subsection, section SVD), 2478 
SVD (theorem), 2479 
SVP4 (example), 2480 
SYM (definition), 2481 
SYM (example), 2482 
symmetric matrices 
    theorem SMS, 2483 
symmetric matrix 
    example SYM, 2484 
system of equations 
    vector equality 
        example VESE, 2485 
system of linear equations 
    definition SLE, 2486 
T (archetype), 2487 
T (definition), 2488 
T (notation), 2489 
T (part), 2490 
T (section), 2491 
T (technique, section PT), 2492 
TCSD (example), 2493 
TD (section), 2494 
TD (subsection, section TD), 2495 
TD (theorem), 2496 
                                                                          
                                                                          
TD4 (example), 2497 
TDEE (theorem), 2498 
TDEE6 (example), 2499 
TDSSE (example), 2500 
TDSSE (subsection, section TD), 2501 
technique 
    C, 2502 
    CD, 2503 
    CP, 2504 
    CV, 2505 
    D, 2506 
    DC, 2507 
    E, 2508 
    GS, 2509 
    I, 2510 
    L, 2511 
    LC, 2512 
    ME, 2513 
    N, 2514 
    P, 2515 
    PI, 2516 
    T, 2517 
    U, 2518 
theorem 
    AA, 2519 
    AIP, 2520 
    AISM, 2521 
    AIU, 2522 
    AMA, 2523 
    AMSM, 2524 
    BCS, 2525 
    BIS, 2526 
    BNS, 2527 
    BRS, 2528 
    BS, 2529 
    CB, 2530 
    CCM, 2531 
    CCRA, 2532 
                                                                          
                                                                          
    CCRM, 2533 
    CCT, 2534 
    CFDVS, 2535 
    CFNLT, 2536 
    CHT, 2537 
    CILTI, 2538 
    CINM, 2539 
    CIVLT, 2540 
    CLI, 2541 
    CLTLT, 2542 
    CMVEI, 2543 
    CNMB, 2544 
    COB, 2545 
    CPSM, 2546 
    CRMA, 2547 
    CRMSM, 2548 
    CRN, 2549 
    CRSM, 2550 
    CRVA, 2551 
    CSCS, 2552 
    CSLTS, 2553 
    CSMS, 2554 
    CSNM, 2555 
    CSRN, 2556 
    CSRST, 2557 
    CSS, 2558 
    CUMOS, 2559 
    DC, 2560 
    DCM, 2561 
    DCP, 2562 
    DEC, 2563 
    DED, 2564 
    DEM, 2565 
    DEMMM, 2566 
    DER, 2567 
    DERC, 2568 
    DFS, 2569 
    DGES, 2570 
                                                                          
                                                                          
    DIM, 2571 
    DLDS, 2572 
    DM, 2573 
    DMFE, 2574 
    DMHP, 2575 
    DMMP, 2576 
    DMST, 2577 
    DNLT, 2578 
    DP, 2579 
    DRCM, 2580 
    DRCMA, 2581 
    DRCS, 2582 
    DRMM, 2583 
    DSD, 2584 
    DSFB, 2585 
    DSFOS, 2586 
    DSLI, 2587 
    DSZI, 2588 
    DSZV, 2589 
    DT, 2590 
    DVM, 2591 
    DZRC, 2592 
    EDELI, 2593 
    EDYES, 2594 
    EEMAP, 2595 
    EER, 2596 
    EESR, 2597 
    EIM, 2598 
    EIS, 2599 
    ELIS, 2600 
    EMDRO, 2601 
    EMHE, 2602 
    EMMVP, 2603 
    EMN, 2604 
    EMNS, 2605 
    EMP, 2606 
    EMRCP, 2607 
    EMS, 2608 
                                                                          
                                                                          
    ENLT, 2609 
    EOMP, 2610 
    EOPSS, 2611 
    EPM, 2612 
    EPSM, 2613 
    ERMCP, 2614 
    ESMM, 2615 
    ETM, 2616 
    FIMP, 2617 
    FS, 2618 
    FTMR, 2619 
    FVCS, 2620 
    G, 2621 
    GEK, 2622 
    GESD, 2623 
    GESIS, 2624 
    GSP, 2625 
    HMIP, 2626 
    HMOE, 2627 
    HMRE, 2628 
    HMVEI, 2629 
    HPC, 2630 
    HPDAA, 2631 
    HPHI, 2632 
    HPHID, 2633 
    HPSMM, 2634 
    HSC, 2635 
    ICBM, 2636 
    ICLT, 2637 
    IFDVS, 2638 
    IILT, 2639 
    ILTB, 2640 
    ILTD, 2641 
    ILTIS, 2642 
    ILTLI, 2643 
    ILTLT, 2644 
    IMILT, 2645 
    IMR, 2646 
                                                                          
                                                                          
    IP, 2647 
    IPAC, 2648 
    IPN, 2649 
    IPSM, 2650 
    IPVA, 2651 
    ISRN, 2652 
    ITMT, 2653 
    IVSED, 2654 
    JCFLT, 2655 
    KILT, 2656 
    KLTS, 2657 
    KNSI, 2658 
    KPI, 2659 
    KPIS, 2660 
    KPLT, 2661 
    KPNLT, 2662 
    LIVHS, 2663 
    LIVRN, 2664 
    LNSMS, 2665 
    LSMR, 2666 
    LTDB, 2667 
    LTLC, 2668 
    LTTZZ, 2669 
    MBLT, 2670 
    MCT, 2671 
    ME, 2672 
    MIMI, 2673 
    MISM, 2674 
    MIT, 2675 
    MIU, 2676 
    MLTCV, 2677 
    MLTLT, 2678 
    MMA, 2679 
    MMAD, 2680 
    MMCC, 2681 
    MMDAA, 2682 
    MMIM, 2683 
    MMIP, 2684 
                                                                          
                                                                          
    MMSMM, 2685 
    MMT, 2686 
    MMZM, 2687 
    MNEM, 2688 
    MRCB, 2689 
    MRCLT, 2690 
    MRMLT, 2691 
    MRRGE, 2692 
    MRSLT, 2693 
    MVSLD, 2694 
    NEM, 2695 
    NI, 2696 
    NJB, 2697 
    NME1, 2698 
    NME2, 2699 
    NME3, 2700 
    NME4, 2701 
    NME5, 2702 
    NME6, 2703 
    NME7, 2704 
    NME8, 2705 
    NME9, 2706 
    NMLIC, 2707 
    NMPEM, 2708 
    NMRRI, 2709 
    NMTNS, 2710 
    NMUS, 2711 
    NOILT, 2712 
    NPNT, 2713 
    NSMS, 2714 
    NVM, 2715 
    OBNM, 2716 
    OBUTR, 2717 
    OD, 2718 
    OSIS, 2719 
    OSLI, 2720 
    PCNA, 2721 
    PDM, 2722 
                                                                          
                                                                          
    PEEF, 2723 
    PIP, 2724 
    PSMSR, 2725 
    PSPHS, 2726 
    PSSD, 2727 
    PSSLS, 2728 
    PTMT, 2729 
    RCLS, 2730 
    RCSI, 2731 
    RDS, 2732 
    REMEF, 2733 
    REMES, 2734 
    REMRS, 2735 
    RGEN, 2736 
    RLTS, 2737 
    RMRT, 2738 
    RNNM, 2739 
    ROD, 2740 
    ROSLT, 2741 
    RPI, 2742 
    RPNC, 2743 
    RPNDD, 2744 
    RREFU, 2745 
    RSLT, 2746 
    RSMS, 2747 
    SCB, 2748 
    SER, 2749 
    SLEMM, 2750 
    SLSLC, 2751 
    SLTB, 2752 
    SLTD, 2753 
    SLTLT, 2754 
    SMEE, 2755 
    SMEZV, 2756 
    SMS, 2757 
    SMZD, 2758 
    SMZE, 2759 
    SNCM, 2760 
                                                                          
                                                                          
    SS, 2761 
    SSLD, 2762 
    SSNS, 2763 
    SSRLT, 2764 
    SSS, 2765 
    SUVB, 2766 
    SVD, 2767 
    TD, 2768 
    TDEE, 2769 
    technique T, 2770 
    TIST, 2771 
    TL, 2772 
    TMA, 2773 
    TMSM, 2774 
    TSE, 2775 
    TSRM, 2776 
    TSS, 2777 
    TT, 2778 
    TTMI, 2779 
    UMCOB, 2780 
    UMI, 2781 
    UMPIP, 2782 
    USR, 2783 
    UTMR, 2784 
    VFSLS, 2785 
    VRI, 2786 
    VRILT, 2787 
    VRLT, 2788 
    VRRB, 2789 
    VRS, 2790 
    VSLT, 2791 
    VSPCV, 2792 
    VSPM, 2793 
    ZSSM, 2794 
    ZVSM, 2795 
    ZVU, 2796 
ti83 
    matrix entry (computation), 2797 
                                                                          
                                                                          
    row reduce (computation), 2798 
    vector linear combinations (computation), 2799 
TI83 (section), 2800 
ti86 
    matrix entry (computation), 2801 
    row reduce (computation), 2802 
    transpose of a matrix (computation), 2803 
    vector linear combinations (computation), 2804 
TI86 (section), 2805 
TIS (example), 2806 
TIST (theorem), 2807 
TIVS (example), 2808 
TKAP (example), 2809 
TL (theorem), 2810 
TLC (example), 2811 
TM (definition), 2812 
TM (example), 2813 
TM (notation), 2814 
TM (subsection, section OD), 2815 
TM.MMA (computation, section MMA), 2816 
TM.SAGE (computation, section SAGE), 2817 
TM.TI86 (computation, section TI86), 2818 
TMA (theorem), 2819 
TMP (example), 2820 
TMSM (theorem), 2821 
TOV (example), 2822 
trace 
    definition T, 2823 
    linearity 
        theorem TL, 2824 
    matrix multiplication 
        theorem TSRM, 2825 
    notation, 2826 
    similarity 
        theorem TIST, 2827 
    sum of eigenvalues 
        theorem TSE, 2828 
trail mix 
                                                                          
                                                                          
    example TMP, 2829 
transpose 
    matrix scalar multiplication 
        theorem TMSM, 2830 
    example TM, 2831 
    matrix addition 
        theorem TMA, 2832 
    matrix inverse, 2833, 2834 
    notation, 2835 
    scalar multiplication, 2836 
transpose of a matrix 
    mathematica, 2837 
    sage, 2838 
    ti86, 2839 
transpose of a transpose 
    theorem TT, 2840 
TREM (example), 2841 
triangular decomposition 
    entry by entry, size 6 
        example TDEE6, 2842 
    entry by entry 
        theorem TDEE, 2843 
    size 4 
        example TD4, 2844 
    solving systems of equations 
        example TDSSE, 2845 
    theorem TD, 2846 
triangular matrix 
    inverse 
        theorem ITMT, 2847 
trivial solution 
    system of equations 
        definition TSHSE, 2848 
TS (definition), 2849 
TS (subsection, section S), 2850 
TSE (theorem), 2851 
TSHSE (definition), 2852 
TSM (subsection, section MO), 2853 
                                                                          
                                                                          
TSRM (theorem), 2854 
TSS (section), 2855 
TSS (subsection, section S), 2856 
TSS (theorem), 2857 
TSVS (definition), 2858 
TT (theorem), 2859 
TTMI (theorem), 2860 
TTS (example), 2861 
typical systems, 2 × 2 
    example TTS, 2862 
U (archetype), 2863 
U (technique, section PT), 2864 
UM (definition), 2865 
UM (subsection, section MINM), 2866 
UM3 (example), 2867 
UMCOB (theorem), 2868 
UMI (theorem), 2869 
UMPIP (theorem), 2870 
unique solution, 3 × 3 
    example US, 2871 
    example USR, 2872 
uniqueness 
    technique U, 2873 
unit vectors 
    basis 
        theorem SUVB, 2874 
    definition SUV, 2875 
    orthogonal 
        example SUVOS, 2876 
unitary 
    permutation matrix 
        example UPM, 2877 
    size 3 
        example UM3, 2878 
unitary matrices 
    columns 
                                                                          
                                                                          
        theorem CUMOS, 2879 
unitary matrix 
    inner product 
        theorem UMPIP, 2880 
UPM (example), 2881 
upper triangular matrix 
    definition UTM, 2882 
US (example), 2883 
USR (example), 2884 
USR (theorem), 2885 
UTM (definition), 2886 
UTMR (subsection, section OD), 2887 
UTMR (theorem), 2888 
V (acronyms, section O), 2889 
V (archetype), 2890 
V (chapter), 2891 
VA (example), 2892 
Vandermonde matrix 
    definition VM, 2893 
vandermonde matrix 
    determinant 
        theorem DVM, 2894 
    nonsingular 
        theorem NVM, 2895 
    size 4 
        example VM4, 2896 
VEASM (subsection, section VO), 2897 
vector 
    addition 
        definition CVA, 2898 
    column 
        definition CV, 2899 
    equality 
        definition CVE, 2900 
        notation, 2901 
    inner product 
                                                                          
                                                                          
        definition IP, 2902 
    norm 
        definition NV, 2903 
    notation, 2904 
    of constants 
        definition VOC, 2905 
    product with matrix, 2906, 2907 
    scalar multiplication 
        definition CVSM, 2908 
vector addition 
    example VA, 2909 
vector component 
    notation, 2910 
vector form of solutions 
    Archetype D 
        example VFSAD, 2911 
    Archetype I 
        example VFSAI, 2912 
    Archetype L 
        example VFSAL, 2913 
    example VFS, 2914 
    mathematica, 2915 
    theorem VFSLS, 2916 
vector linear combinations 
    mathematica, 2917 
    sage, 2918 
    ti83, 2919 
    ti86, 2920 
vector representation 
    example AVR, 2921 
    example VRC4, 2922 
    injective 
        theorem VRI, 2923 
    invertible 
        theorem VRILT, 2924 
    linear transformation 
        definition VR, 2925 
        notation, 2926 
                                                                          
                                                                          
        theorem VRLT, 2927 
    surjective 
        theorem VRS, 2928 
    theorem VRRB, 2929 
vector representations 
    polynomials 
        example VRP2, 2930 
vector scalar multiplication 
    example CVSM, 2931 
vector space 
    characterization 
        theorem CFDVS, 2932 
    column vectors 
        definition VSCV, 2933 
    definition VS, 2934 
    infinite dimension 
        example VSPUD, 2935 
    linear transformations 
        theorem VSLT, 2936 
    over integers mod 5 
        example VSIM5, 2937 
vector space of column vectors 
    notation, 2938 
vector space of functions 
    example VSF, 2939 
vector space of infinite sequences 
    example VSIS, 2940 
vector space of matrices 
    definition VSM, 2941 
    example VSM, 2942 
    notation, 2943 
vector space of polynomials 
    example VSP, 2944 
vector space properties 
    column vectors 
        theorem VSPCV, 2945 
    matrices 
        theorem VSPM, 2946 
                                                                          
                                                                          
vector space, crazy 
    example CVS, 2947 
vector space, singleton 
    example VSS, 2948 
vector spaces 
    isomorphic 
        definition IVS, 2949 
        theorem IFDVS, 2950 
VESE (example), 2951 
VFS (example), 2952 
VFSAD (example), 2953 
VFSAI (example), 2954 
VFSAL (example), 2955 
VFSLS (theorem), 2956 
VFSS (subsection, section LC), 2957 
VFSS.MMA (computation, section MMA), 2958 
VLC.MMA (computation, section MMA), 2959 
VLC.SAGE (computation, section SAGE), 2960 
VLC.TI83 (computation, section TI83), 2961 
VLC.TI86 (computation, section TI86), 2962 
VM (definition), 2963 
VM (section), 2964 
VM4 (example), 2965 
VO (section), 2966 
VOC (definition), 2967 
VR (definition), 2968 
VR (notation), 2969 
VR (section), 2970 
VR (subsection, section LISS), 2971 
VRC4 (example), 2972 
VRI (theorem), 2973 
VRILT (theorem), 2974 
VRLT (theorem), 2975 
VRP2 (example), 2976 
VRRB (theorem), 2977 
VRS (theorem), 2978 
VS (acronyms, section PD), 2979 
VS (chapter), 2980 
                                                                          
                                                                          
VS (definition), 2981 
VS (section), 2982 
VS (subsection, section VS), 2983 
VSCV (definition), 2984 
VSCV (example), 2985 
VSCV (notation), 2986 
VSF (example), 2987 
VSIM5 (example), 2988 
VSIS (example), 2989 
VSLT (theorem), 2990 
VSM (definition), 2991 
VSM (example), 2992 
VSM (notation), 2993 
VSP (example), 2994 
VSP (subsection, section MO), 2995 
VSP (subsection, section VO), 2996 
VSP (subsection, section VS), 2997 
VSPCV (theorem), 2998 
VSPM (theorem), 2999 
VSPUD (example), 3000 
VSS (example), 3001 
W (archetype), 3002 
WILA (section), 3003 
X (archetype), 3004 
Z (Property), 3005 
ZC (Property), 3006 
ZCN (Property), 3007 
ZCV (definition), 3008 
ZCV (notation), 3009 
zero 
    complex numbers 
        Property ZCN, 3010 
                                                                          
                                                                          
    field 
        Property ZF, 3011 
zero column vector 
    definition ZCV, 3012 
    notation, 3013 
zero matrix 
    notation, 3014 
zero vector 
    column vectors 
        Property ZC, 3015 
    matrices 
        Property ZM, 3016 
    unique 
        theorem ZVU, 3017 
    vectors 
        Property Z, 3018 
ZF (Property), 3019 
ZM (definition), 3020 
ZM (notation), 3021 
ZM (Property), 3022 
ZNDAB (example), 3023 
ZSSM (theorem), 3024 
ZVSM (theorem), 3025 
ZVU (theorem), 3026