B (archetype), 98 
                                                                          
                                                                          
B (definition), 99 
B (section), 100 
B (subsection, section B), 101 
basis 
    columns nonsingular matrix 
        example CABAK, 102 
    common size 
        theorem BIS, 103 
    crazy vector apace 
        example BC, 104 
    definition B, 105 
    matrices 
        example BM, 106 
        example BSM22, 107 
    polynomials 
        example BP, 108 
        example BPR, 109 
        example BSP4, 110 
        example SVP4, 111 
    subspace of matrices 
        example BDM22, 112 
BC (example), 113 
BCS (theorem), 114 
BDE (example), 115 
BDM22 (example), 116 
best cities 
    money magazine 
        example MBC, 117 
BIS (theorem), 118 
BM (example), 119 
BNM (subsection, section B), 120 
BNS (theorem), 121 
BP (example), 122 
BPR (example), 123 
BRLT (example), 124 
BRS (theorem), 125 
BS (theorem), 126 
BSCV (subsection, section B), 127 
                                                                          
                                                                          
BSM22 (example), 128 
BSP4 (example), 129 
C (archetype), 130 
C (definition), 131 
C (notation), 132 
C (part), 133 
C (Property), 134 
C (technique, section PT), 135 
CABAK (example), 136 
CACN (Property), 137 
CAEHW (example), 138 
CAF (Property), 139 
canonical form 
    nilpotent linear transformation 
        example CFNLT, 140 
        theorem CFNLT, 141 
CAV (subsection, section O), 142 
Cayley-Hamilton 
    theorem CHT, 143 
CB (section), 144 
CB (theorem), 145 
CBCV (example), 146 
CBM (definition), 147 
CBM (subsection, section CB), 148 
CBP (example), 149 
CC (Property), 150 
CCCV (definition), 151 
CCCV (notation), 152 
CCM (definition), 153 
CCM (example), 154 
CCM (notation), 155 
CCM (theorem), 156 
CCN (definition), 157 
CCN (notation), 158 
CCN (subsection, section CNO), 159 
CCRA (theorem), 160 
                                                                          
                                                                          
CCRM (theorem), 161 
CCT (theorem), 162 
CD (subsection, section DM), 163 
CD (technique, section PT), 164 
CEE (subsection, section EE), 165 
CELT (example), 166 
CELT (subsection, section CB), 167 
CEMS6 (example), 168 
CF (section), 169 
CFDVS (theorem), 170 
CFNLT (example), 171 
CFNLT (subsection, section NLT), 172 
CFNLT (theorem), 173 
CFV (example), 174 
change of basis 
    between polynomials 
        example CBP, 175 
change-of-basis 
    between column vectors 
        example CBCV, 176 
    matrix representation 
        theorem MRCB, 177 
    similarity 
        theorem SCB, 178 
    theorem CB, 179 
change-of-basis matrix 
    definition CBM, 180 
    inverse 
        theorem ICBM, 181 
characteristic polynomial 
    definition CP, 182 
    degree 
        theorem DCP, 183 
    size 3 matrix 
        example CPMS3, 184 
CHT (subsection, section JCF), 185 
CHT (theorem), 186 
CILT (subsection, section ILT), 187 
                                                                          
                                                                          
CILTI (theorem), 188 
CIM (subsection, section MISLE), 189 
CINM (theorem), 190 
CIVLT (example), 191 
CIVLT (theorem), 192 
CLI (theorem), 193 
CLTLT (theorem), 194 
CM (definition), 195 
CM (Property), 196 
CM32 (example), 197 
CMCN (Property), 198 
CMF (Property), 199 
CMI (example), 200 
CMIAB (example), 201 
CMVEI (theorem), 202 
CN (appendix), 203 
CNA (definition), 204 
CNA (notation), 205 
CNA (subsection, section CNO), 206 
CNE (definition), 207 
CNE (notation), 208 
CNM (definition), 209 
CNM (notation), 210 
CNMB (theorem), 211 
CNO (section), 212 
CNS1 (example), 213 
CNS2 (example), 214 
CNSV (example), 215 
COB (theorem), 216 
coefficient matrix 
    definition CM, 217 
    nonsingular 
        theorem SNCM, 218 
column space 
    as null space 
        theorem FS, 219 
    Archetype A 
        example CSAA, 220 
                                                                          
                                                                          
    Archetype B 
        example CSAB, 221 
    as null space 
        example CSANS, 222 
    as null space, Archetype G 
        example FSAG, 223 
    as row space 
        theorem CSRST, 224 
    basis 
        theorem BCS, 225 
    consistent system 
        theorem CSCS, 226 
    consistent systems 
        example CSMCS, 227 
    isomorphic to range, 228 
    matrix, 229 
    nonsingular matrix 
        theorem CSNM, 230 
    notation, 231 
    original columns, Archetype D 
        example CSOCD, 232 
    row operations, Archetype I 
        example CSROI, 233 
    subspace 
        theorem CSMS, 234 
    testing membership 
        example MCSM, 235 
    two computations 
        example CSTW, 236 
column vector addition 
    notation, 237 
column vector scalar multiplication 
    notation, 238 
commutativity 
    column vectors 
        Property CC, 239 
    matrices 
        Property CM, 240 
                                                                          
                                                                          
    vectors 
        Property C, 241 
complex m-space 
    example VSCV, 242 
complex arithmetic 
    example ACN, 243 
complex number 
    conjugate 
        example CSCN, 244 
    modulus 
        example MSCN, 245 
complex number 
    conjugate 
        definition CCN, 246 
    modulus 
        definition MCN, 247 
complex numbers 
    addition 
        definition CNA, 248 
        notation, 249 
    arithmetic properties 
        theorem PCNA, 250 
    equality 
        definition CNE, 251 
        notation, 252 
    multiplication 
        definition CNM, 253 
        notation, 254 
complex vector space 
    dimension 
        theorem DCM, 255 
composition 
    injective linear transformations 
        theorem CILTI, 256 
    surjective linear transformations 
        theorem CSLTS, 257 
conjugate 
    addition 
                                                                          
                                                                          
        theorem CCRA, 258 
    column vector 
        definition CCCV, 259 
    matrix 
        definition CCM, 260 
        notation, 261 
    multiplication 
        theorem CCRM, 262 
    notation, 263 
    of conjugate of a matrix 
        theorem CCM, 264 
    scalar multiplication 
        theorem CRSM, 265 
    twice 
        theorem CCT, 266 
    vector addition 
        theorem CRVA, 267 
conjugate of a vector 
    notation, 268 
conjugation 
    matrix addition 
        theorem CRMA, 269 
    matrix scalar multiplication 
        theorem CRMSM, 270 
    matrix transpose 
        theorem MCT, 271 
consistent linear system, 272 
consistent linear systems 
    theorem CSRN, 273 
consistent system 
    definition CS, 274 
constructive proofs 
    technique C, 275 
contradiction 
    technique CD, 276 
contrapositive 
    technique CP, 277 
converse 
                                                                          
                                                                          
    technique CV, 278 
coordinates 
    orthonormal basis 
        theorem COB, 279 
coordinatization 
    linear combination of matrices 
        example CM32, 280 
    linear independence 
        theorem CLI, 281 
    orthonormal basis 
        example CROB3, 282 
        example CROB4, 283 
    spanning sets 
        theorem CSS, 284 
coordinatization principle, 285 
coordinatizing 
    polynomials 
        example CP2, 286 
COV (example), 287 
COV (subsection, section LDS), 288 
CP (definition), 289 
CP (subsection, section VR), 290 
CP (technique, section PT), 291 
CP2 (example), 292 
CPMS3 (example), 293 
CPSM (theorem), 294 
crazy vector space 
    example CVSR, 295 
    properties 
        example PCVS, 296 
CRMA (theorem), 297 
CRMSM (theorem), 298 
CRN (theorem), 299 
CROB3 (example), 300 
CROB4 (example), 301 
CRS (section), 302 
CRS (subsection, section FS), 303 
CRSM (theorem), 304 
                                                                          
                                                                          
CRVA (theorem), 305 
CS (definition), 306 
CS (example), 307 
CS (subsection, section TSS), 308 
CSAA (example), 309 
CSAB (example), 310 
CSANS (example), 311 
CSCN (example), 312 
CSCS (theorem), 313 
CSIP (example), 314 
CSLT (subsection, section SLT), 315 
CSLTS (theorem), 316 
CSM (definition), 317 
CSM (notation), 318 
CSMCS (example), 319 
CSMS (theorem), 320 
CSNM (subsection, section CRS), 321 
CSNM (theorem), 322 
CSOCD (example), 323 
CSRN (theorem), 324 
CSROI (example), 325 
CSRST (diagram), 326 
CSRST (theorem), 327 
CSS (theorem), 328 
CSSE (subsection, section CRS), 329 
CSSOC (subsection, section CRS), 330 
CSTW (example), 331 
CTD (subsection, section TD), 332 
CTLT (example), 333 
CUMOS (theorem), 334 
curve fitting 
    polynomial through 5 points 
        example PTFP, 335 
CV (definition), 336 
CV (notation), 337 
CV (technique, section PT), 338 
CVA (definition), 339 
CVA (notation), 340 
                                                                          
                                                                          
CVC (notation), 341 
CVE (definition), 342 
CVE (notation), 343 
CVS (example), 344 
CVS (subsection, section VR), 345 
CVSM (definition), 346 
CVSM (example), 347 
CVSM (notation), 348 
CVSR (example), 349 
D (acronyms, section PDM), 350 
D (archetype), 351 
D (chapter), 352 
D (definition), 353 
D (notation), 354 
D (section), 355 
D (subsection, section D), 356 
D (subsection, section SD), 357 
D (technique, section PT), 358 
D33M (example), 359 
DAB (example), 360 
DC (example), 361 
DC (technique, section PT), 362 
DC (theorem), 363 
DCM (theorem), 364 
DCN (Property), 365 
DCP (theorem), 366 
DD (subsection, section DM), 367 
DEC (theorem), 368 
decomposition 
    technique DC, 369 
DED (theorem), 370 
definition 
    A, 371 
    AM, 372 
    AME, 373 
    B, 374 
                                                                          
                                                                          
    C, 375 
    CBM, 376 
    CCCV, 377 
    CCM, 378 
    CCN, 379 
    CM, 380 
    CNA, 381 
    CNE, 382 
    CNM, 383 
    CP, 384 
    CS, 385 
    CSM, 386 
    CV, 387 
    CVA, 388 
    CVE, 389 
    CVSM, 390 
    D, 391 
    DIM, 392 
    DM, 393 
    DS, 394 
    DZM, 395 
    EEF, 396 
    EELT, 397 
    EEM, 398 
    ELEM, 399 
    EM, 400 
    EO, 401 
    ES, 402 
    ESYS, 403 
    F, 404 
    GES, 405 
    GEV, 406 
    GME, 407 
    HI, 408 
    HID, 409 
    HM, 410 
    HP, 411 
    HS, 412 
                                                                          
                                                                          
    IDLT, 413 
    IDV, 414 
    IE, 415 
    ILT, 416 
    IM, 417 
    IMP, 418 
    IP, 419 
    IS, 420 
    IVLT, 421 
    IVS, 422 
    JB, 423 
    JCF, 424 
    KLT, 425 
    LC, 426 
    LCCV, 427 
    LI, 428 
    LICV, 429 
    LNS, 430 
    LSS, 431 
    LT, 432 
    LTA, 433 
    LTC, 434 
    LTM, 435 
    LTR, 436 
    LTSM, 437 
    M, 438 
    MA, 439 
    MCN, 440 
    ME, 441 
    MI, 442 
    MM, 443 
    MR, 444 
    MRLS, 445 
    MSM, 446 
    MVP, 447 
    NLT, 448 
    NM, 449 
    NOLT, 450 
                                                                          
                                                                          
    NOM, 451 
    NRML, 452 
    NSM, 453 
    NV, 454 
    ONS, 455 
    OSV, 456 
    OV, 457 
    PI, 458 
    PSM, 459 
    REM, 460 
    RLD, 461 
    RLDCV, 462 
    RLT, 463 
    RO, 464 
    ROLT, 465 
    ROM, 466 
    RR, 467 
    RREF, 468 
    RSM, 469 
    S, 470 
    SC, 471 
    SE, 472 
    SET, 473 
    SI, 474 
    SIM, 475 
    SLE, 476 
    SLT, 477 
    SM, 478 
    SOLV, 479 
    SQM, 480 
    SRM, 481 
    SS, 482 
    SSCV, 483 
    SSET, 484 
    SU, 485 
    SUV, 486 
    SV, 487 
    SYM, 488 
                                                                          
                                                                          
    T, 489 
    technique D, 490 
    TM, 491 
    TS, 492 
    TSHSE, 493 
    TSVS, 494 
    UM, 495 
    UTM, 496 
    VM, 497 
    VOC, 498 
    VR, 499 
    VS, 500 
    VSCV, 501 
    VSM, 502 
    ZCV, 503 
    ZM, 504 
DEHD (example), 505 
DEM (theorem), 506 
DEMMM (theorem), 507 
DEMS5 (example), 508 
DER (theorem), 509 
DERC (theorem), 510 
determinant 
    computed two ways 
        example TCSD, 511 
    definition DM, 512 
    equal rows or columns 
        theorem DERC, 513 
    expansion, columns 
        theorem DEC, 514 
    expansion, rows 
        theorem DER, 515 
    identity matrix 
        theorem DIM, 516 
    matrix multiplication 
        theorem DRMM, 517 
    nonsingular matrix, 518 
    notation, 519 
                                                                          
                                                                          
    row or column multiple 
        theorem DRCM, 520 
    row or column swap 
        theorem DRCS, 521 
    size 2 matrix 
        theorem DMST, 522 
    size 3 matrix 
        example D33M, 523 
    transpose 
        theorem DT, 524 
    via row operations 
        example DRO, 525 
    zero 
        theorem SMZD, 526 
    zero row or column 
        theorem DZRC, 527 
    zero versus nonzero 
        example ZNDAB, 528 
determinant, upper triangular matrix 
    example DUTM, 529 
determinants 
    elementary matrices 
        theorem DEMMM, 530 
DF (Property), 531 
DF (subsection, section CF), 532 
DFS (subsection, section PD), 533 
DFS (theorem), 534 
DGES (theorem), 535 
diagonal matrix 
    definition DIM, 536 
diagonalizable 
    definition DZM, 537 
    distinct eigenvalues 
        example DEHD, 538 
        theorem DED, 539 
    full eigenspaces 
        theorem DMFE, 540 
    not 
                                                                          
                                                                          
        example NDMS4, 541 
diagonalizable matrix 
    high power 
        example HPDM, 542 
diagonalization 
    Archetype B 
        example DAB, 543 
    criteria 
        theorem DC, 544 
    example DMS3, 545 
diagram 
    CSRST, 546 
    DLTA, 547 
    DLTM, 548 
    DTSLS, 549 
    FTMR, 550 
    FTMRA, 551 
    GLT, 552 
    ILT, 553 
    MRCLT, 554 
    NILT, 555 
DIM (definition), 556 
DIM (theorem), 557 
dimension 
    crazy vector space 
        example DC, 558 
    definition D, 559 
    notation, 560 
    polynomial subspace 
        example DSP4, 561 
    proper subspaces 
        theorem PSSD, 562 
    subspace 
        example DSM22, 563 
direct sum 
    decomposing zero vector 
        theorem DSZV, 564 
    definition DS, 565 
                                                                          
                                                                          
    dimension 
        theorem DSD, 566 
    example SDS, 567 
    from a basis 
        theorem DSFB, 568 
    from one subspace 
        theorem DSFOS, 569 
    notation, 570 
    zero intersection 
        theorem DSZI, 571 
direct sums 
    linear independence 
        theorem DSLI, 572 
    repeated 
        theorem RDS, 573 
distributivity 
    complex numbers 
        Property DCN, 574 
    field 
        Property DF, 575 
distributivity, matrix addition 
    matrices 
        Property DMAM, 576 
distributivity, scalar addition 
    column vectors 
        Property DSAC, 577 
    matrices 
        Property DSAM, 578 
    vectors 
        Property DSA, 579 
distributivity, vector addition 
    column vectors 
        Property DVAC, 580 
    vectors 
        Property DVA, 581 
DLDS (theorem), 582 
DLTA (diagram), 583 
DLTM (diagram), 584 
                                                                          
                                                                          
DM (definition), 585 
DM (notation), 586 
DM (section), 587 
DM (theorem), 588 
DMAM (Property), 589 
DMFE (theorem), 590 
DMHP (subsection, section HP), 591 
DMHP (theorem), 592 
DMMP (theorem), 593 
DMS3 (example), 594 
DMST (theorem), 595 
DNLT (theorem), 596 
DNMMM (subsection, section PDM), 597 
DP (theorem), 598 
DRCM (theorem), 599 
DRCMA (theorem), 600 
DRCS (theorem), 601 
DRMM (theorem), 602 
DRO (example), 603 
DRO (subsection, section PDM), 604 
DROEM (subsection, section PDM), 605 
DS (definition), 606 
DS (notation), 607 
DS (subsection, section PD), 608 
DSA (Property), 609 
DSAC (Property), 610 
DSAM (Property), 611 
DSD (theorem), 612 
DSFB (theorem), 613 
DSFOS (theorem), 614 
DSLI (theorem), 615 
DSM22 (example), 616 
DSP4 (example), 617 
DSZI (theorem), 618 
DSZV (theorem), 619 
DT (theorem), 620 
DTSLS (diagram), 621 
DUTM (example), 622 
                                                                          
                                                                          
DVA (Property), 623 
DVAC (Property), 624 
DVM (theorem), 625 
DVS (subsection, section D), 626 
DZM (definition), 627 
DZRC (theorem), 628 
E (acronyms, section SD), 629 
E (archetype), 630 
E (chapter), 631 
E (technique, section PT), 632 
E.SAGE (computation, section SAGE), 633 
ECEE (subsection, section EE), 634 
EDELI (theorem), 635 
EDYES (theorem), 636 
EE (section), 637 
EEE (subsection, section EE), 638 
EEF (definition), 639 
EEF (subsection, section FS), 640 
EELT (definition), 641 
EELT (subsection, section CB), 642 
EEM (definition), 643 
EEM (subsection, section EE), 644 
EEMAP (theorem), 645 
EENS (example), 646 
EER (theorem), 647 
EESR (theorem), 648 
EHM (subsection, section PEE), 649 
eigenspace 
    as null space 
        theorem EMNS, 650 
    definition EM, 651 
    invariant subspace 
        theorem EIS, 652 
    subspace 
        theorem EMS, 653 
eigenspaces 
                                                                          
                                                                          
    sage, 654 
eigenvalue 
    algebraic multiplicity 
        definition AME, 655 
        notation, 656 
    complex 
        example CEMS6, 657 
    definition EEM, 658 
    existence 
        example CAEHW, 659 
        theorem EMHE, 660 
    geometric multiplicity 
        definition GME, 661 
        notation, 662 
    index, 663 
    linear transformation 
        definition EELT, 664 
    multiplicities 
        example EMMS4, 665 
    power 
        theorem EOMP, 666 
    root of characteristic polynomial 
        theorem EMRCP, 667 
    scalar multiple 
        theorem ESMM, 668 
    symmetric matrix 
        example ESMS4, 669 
    zero 
        theorem SMZE, 670 
eigenvalues 
    building desired 
        example BDE, 671 
    complex, of a linear transformation 
        example CELT, 672 
    conjugate pairs 
        theorem ERMCP, 673 
    distinct 
        example DEMS5, 674 
                                                                          
                                                                          
    example SEE, 675 
    Hermitian matrices 
        theorem HMRE, 676 
    inverse 
        theorem EIM, 677 
    maximum number 
        theorem MNEM, 678 
    multiplicities 
        example HMEM5, 679 
        theorem ME, 680 
    number 
        theorem NEM, 681 
    of a polynomial 
        theorem EPM, 682 
    size 3 matrix 
        example EMS3, 683 
        example ESMS3, 684 
    transpose 
        theorem ETM, 685 
eigenvalues, eigenvectors 
    vector, matrix representations 
        theorem EER, 686 
eigenvector, 687 
    linear transformation, 688 
eigenvectors, 689 
    conjugate pairs, 690 
    Hermitian matrices 
        theorem HMOE, 691 
    linear transformation 
        example ELTBM, 692 
        example ELTBP, 693 
    linearly independent 
        theorem EDELI, 694 
    of a linear transformation 
        example ELTT, 695 
EILT (subsection, section ILT), 696 
EIM (theorem), 697 
EIS (example), 698 
                                                                          
                                                                          
EIS (theorem), 699 
ELEM (definition), 700 
ELEM (notation), 701 
elementary matrices 
    definition ELEM, 702 
    determinants 
        theorem DEM, 703 
    nonsingular 
        theorem EMN, 704 
    notation, 705 
    row operations 
        example EMRO, 706 
        theorem EMDRO, 707 
ELIS (theorem), 708 
ELTBM (example), 709 
ELTBP (example), 710 
ELTT (example), 711 
EM (definition), 712 
EM (subsection, section DM), 713 
EMDRO (theorem), 714 
EMHE (theorem), 715 
EMMS4 (example), 716 
EMMVP (theorem), 717 
EMN (theorem), 718 
EMNS (theorem), 719 
EMP (theorem), 720 
empty set, 721 
    notation, 722 
EMRCP (theorem), 723 
EMRO (example), 724 
EMS (theorem), 725 
EMS3 (example), 726 
ENLT (theorem), 727 
EO (definition), 728 
EOMP (theorem), 729 
EOPSS (theorem), 730 
EPM (theorem), 731 
EPSM (theorem), 732 
                                                                          
                                                                          
equal matrices 
    via equal matrix-vector products 
        theorem EMMVP, 733 
equation operations 
    definition EO, 734 
    theorem EOPSS, 735 
equivalence statements 
    technique E, 736 
equivalences 
    technique ME, 737 
equivalent systems 
    definition ESYS, 738 
ERMCP (theorem), 739 
ES (definition), 740 
ES (notation), 741 
ESEO (subsection, section SSLE), 742 
ESLT (subsection, section SLT), 743 
ESMM (theorem), 744 
ESMS3 (example), 745 
ESMS4 (example), 746 
ESYS (definition), 747 
ETM (theorem), 748 
EVS (subsection, section VS), 749 
example 
    AALC, 750 
    ABLC, 751 
    ABS, 752 
    ACN, 753 
    AHSAC, 754 
    AIVLT, 755 
    ALT, 756 
    ALTMM, 757 
    AM, 758 
    AMAA, 759 
    ANILT, 760 
    ANM, 761 
    AOS, 762 
    ASC, 763 
                                                                          
                                                                          
    AVR, 764 
    BC, 765 
    BDE, 766 
    BDM22, 767 
    BM, 768 
    BP, 769 
    BPR, 770 
    BRLT, 771 
    BSM22, 772 
    BSP4, 773 
    CABAK, 774 
    CAEHW, 775 
    CBCV, 776 
    CBP, 777 
    CCM, 778 
    CELT, 779 
    CEMS6, 780 
    CFNLT, 781 
    CFV, 782 
    CIVLT, 783 
    CM32, 784 
    CMI, 785 
    CMIAB, 786 
    CNS1, 787 
    CNS2, 788 
    CNSV, 789 
    COV, 790 
    CP2, 791 
    CPMS3, 792 
    CROB3, 793 
    CROB4, 794 
    CS, 795 
    CSAA, 796 
    CSAB, 797 
    CSANS, 798 
    CSCN, 799 
    CSIP, 800 
    CSMCS, 801 
                                                                          
                                                                          
    CSOCD, 802 
    CSROI, 803 
    CSTW, 804 
    CTLT, 805 
    CVS, 806 
    CVSM, 807 
    CVSR, 808 
    D33M, 809 
    DAB, 810 
    DC, 811 
    DEHD, 812 
    DEMS5, 813 
    DMS3, 814 
    DRO, 815 
    DSM22, 816 
    DSP4, 817 
    DUTM, 818 
    EENS, 819 
    EIS, 820 
    ELTBM, 821 
    ELTBP, 822 
    ELTT, 823 
    EMMS4, 824 
    EMRO, 825 
    EMS3, 826 
    ESMS3, 827 
    ESMS4, 828 
    FDV, 829 
    FF8, 830 
    FRAN, 831 
    FS1, 832 
    FS2, 833 
    FSAG, 834 
    FSCF, 835 
    GE4, 836 
    GE6, 837 
    GENR6, 838 
    GSTV, 839 
                                                                          
                                                                          
    HISAA, 840 
    HISAD, 841 
    HMEM5, 842 
    HP, 843 
    HPDM, 844 
    HUSAB, 845 
    IAP, 846 
    IAR, 847 
    IAS, 848 
    IAV, 849 
    ILTVR, 850 
    IM, 851 
    IM11, 852 
    IS, 853 
    ISJB, 854 
    ISMR4, 855 
    ISMR6, 856 
    ISSI, 857 
    IVSAV, 858 
    JB4, 859 
    JCF10, 860 
    KPNLT, 861 
    KVMR, 862 
    LCM, 863 
    LDCAA, 864 
    LDHS, 865 
    LDP4, 866 
    LDRN, 867 
    LDS, 868 
    LIC, 869 
    LICAB, 870 
    LIHS, 871 
    LIM32, 872 
    LINSB, 873 
    LIP4, 874 
    LIS, 875 
    LLDS, 876 
    LNS, 877 
                                                                          
                                                                          
    LTDB1, 878 
    LTDB2, 879 
    LTDB3, 880 
    LTM, 881 
    LTPM, 882 
    LTPP, 883 
    LTRGE, 884 
    MA, 885 
    MBC, 886 
    MCSM, 887 
    MFLT, 888 
    MI, 889 
    MIVS, 890 
    MMNC, 891 
    MNSLE, 892 
    MOLT, 893 
    MPMR, 894 
    MRBE, 895 
    MRCM, 896 
    MSCN, 897 
    MSM, 898 
    MTV, 899 
    MWIAA, 900 
    NDMS4, 901 
    NIAO, 902 
    NIAQ, 903 
    NIAQR, 904 
    NIDAU, 905 
    NJB5, 906 
    NKAO, 907 
    NLT, 908 
    NM, 909 
    NM62, 910 
    NM64, 911 
    NM83, 912 
    NRREF, 913 
    NSAO, 914 
    NSAQ, 915 
                                                                          
                                                                          
    NSAQR, 916 
    NSC2A, 917 
    NSC2S, 918 
    NSC2Z, 919 
    NSDAT, 920 
    NSDS, 921 
    NSE, 922 
    NSEAI, 923 
    NSLE, 924 
    NSLIL, 925 
    NSNM, 926 
    NSR, 927 
    NSS, 928 
    OLTTR, 929 
    ONFV, 930 
    ONTV, 931 
    OSGMD, 932 
    OSMC, 933 
    PCVS, 934 
    PM, 935 
    PSHS, 936 
    PTFP, 937 
    PTM, 938 
    PTMEE, 939 
    RAO, 940 
    RES, 941 
    RNM, 942 
    RNSM, 943 
    ROD2, 944 
    ROD4, 945 
    RREF, 946 
    RREFN, 947 
    RRTI, 948 
    RS, 949 
    RSAI, 950 
    RSB, 951 
    RSC4, 952 
    RSC5, 953 
                                                                          
                                                                          
    RSNS, 954 
    RSREM, 955 
    RVMR, 956 
    S, 957 
    SAA, 958 
    SAB, 959 
    SABMI, 960 
    SAE, 961 
    SAN, 962 
    SAR, 963 
    SAV, 964 
    SC, 965 
    SC3, 966 
    SCAA, 967 
    SCAB, 968 
    SCAD, 969 
    SDS, 970 
    SEE, 971 
    SEEF, 972 
    SETM, 973 
    SI, 974 
    SM2Z7, 975 
    SM32, 976 
    SMLT, 977 
    SMS3, 978 
    SMS5, 979 
    SP4, 980 
    SPIAS, 981 
    SRR, 982 
    SS, 983 
    SS6W, 984 
    SSC, 985 
    SSET, 986 
    SSM22, 987 
    SSNS, 988 
    SSP, 989 
    SSP4, 990 
    STLT, 991 
                                                                          
                                                                          
    STNE, 992 
    SU, 993 
    SUVOS, 994 
    SVP4, 995 
    SYM, 996 
    TCSD, 997 
    TD4, 998 
    TDEE6, 999 
    TDSSE, 1000 
    TIS, 1001 
    TIVS, 1002 
    TKAP, 1003 
    TLC, 1004 
    TM, 1005 
    TMP, 1006 
    TOV, 1007 
    TREM, 1008 
    TTS, 1009 
    UM3, 1010 
    UPM, 1011 
    US, 1012 
    USR, 1013 
    VA, 1014 
    VESE, 1015 
    VFS, 1016 
    VFSAD, 1017 
    VFSAI, 1018 
    VFSAL, 1019 
    VM4, 1020 
    VRC4, 1021 
    VRP2, 1022 
    VSCV, 1023 
    VSF, 1024 
    VSIM5, 1025 
    VSIS, 1026 
    VSM, 1027 
    VSP, 1028 
    VSPUD, 1029 
                                                                          
                                                                          
    VSS, 1030 
    ZNDAB, 1031 
EXC (subsection, section B), 1032 
EXC (subsection, section CB), 1033 
EXC (subsection, section CF), 1034 
EXC (subsection, section CRS), 1035 
EXC (subsection, section D), 1036 
EXC (subsection, section DM), 1037 
EXC (subsection, section EE), 1038 
EXC (subsection, section F), 1039 
EXC (subsection, section FS), 1040 
EXC (subsection, section HP), 1041 
EXC (subsection, section HSE), 1042 
EXC (subsection, section ILT), 1043 
EXC (subsection, section IVLT), 1044 
EXC (subsection, section LC), 1045 
EXC (subsection, section LDS), 1046 
EXC (subsection, section LI), 1047 
EXC (subsection, section LISS), 1048 
EXC (subsection, section LT), 1049 
EXC (subsection, section MINM), 1050 
EXC (subsection, section MISLE), 1051 
EXC (subsection, section MM), 1052 
EXC (subsection, section MO), 1053 
EXC (subsection, section MR), 1054 
EXC (subsection, section NM), 1055 
EXC (subsection, section O), 1056 
EXC (subsection, section PD), 1057 
EXC (subsection, section PDM), 1058 
EXC (subsection, section PEE), 1059 
EXC (subsection, section PSM), 1060 
EXC (subsection, section RREF), 1061 
EXC (subsection, section S), 1062 
EXC (subsection, section SD), 1063 
EXC (subsection, section SLT), 1064 
EXC (subsection, section SS), 1065 
EXC (subsection, section SSLE), 1066 
EXC (subsection, section T), 1067 
                                                                          
                                                                          
EXC (subsection, section TSS), 1068 
EXC (subsection, section VO), 1069 
EXC (subsection, section VR), 1070 
EXC (subsection, section VS), 1071 
EXC (subsection, section WILA), 1072 
extended echelon form 
    submatrices 
        example SEEF, 1073 
extended reduced row-echelon form 
    properties 
        theorem PEEF, 1074 
F (archetype), 1075 
F (definition), 1076 
F (section), 1077 
F (subsection, section F), 1078 
FDV (example), 1079 
FF (subsection, section F), 1080 
FF8 (example), 1081 
Fibonacci sequence 
    example FSCF, 1082 
field 
    definition F, 1083 
FIMP (theorem), 1084 
finite field 
    size 8 
        example FF8, 1085 
four subsets 
    example FS1, 1086 
    example FS2, 1087 
four subspaces 
    dimension 
        theorem DFS, 1088 
FRAN (example), 1089 
free variables 
    example CFV, 1090 
free variables, number 
                                                                          
                                                                          
    theorem FVCS, 1091 
free, independent variables 
    example FDV, 1092 
FS (section), 1093 
FS (subsection, section FS), 1094 
FS (subsection, section SD), 1095 
FS (theorem), 1096 
FS1 (example), 1097 
FS2 (example), 1098 
FSAG (example), 1099 
FSCF (example), 1100 
FTMR (diagram), 1101 
FTMR (theorem), 1102 
FTMRA (diagram), 1103 
FV (subsection, section TSS), 1104 
FVCS (theorem), 1105 
G (archetype), 1106 
G (theorem), 1107 
GE4 (example), 1108 
GE6 (example), 1109 
GEE (subsection, section IS), 1110 
GEK (theorem), 1111 
generalized eigenspace 
    as kernel 
        theorem GEK, 1112 
    definition GES, 1113 
    dimension 
        theorem DGES, 1114 
    dimension 4 domain 
        example GE4, 1115 
    dimension 6 domain 
        example GE6, 1116 
    invariant subspace 
        theorem GESIS, 1117 
    nilpotent restriction 
        theorem RGEN, 1118 
                                                                          
                                                                          
    nilpotent restrictions, dimension 6 domain 
        example GENR6, 1119 
    notation, 1120 
generalized eigenspace decomposition 
    theorem GESD, 1121 
generalized eigenvector 
    definition GEV, 1122 
GENR6 (example), 1123 
GES (definition), 1124 
GES (notation), 1125 
GESD (subsection, section JCF), 1126 
GESD (theorem), 1127 
GESIS (theorem), 1128 
GEV (definition), 1129 
GFDL (appendix), 1130 
GLT (diagram), 1131 
GME (definition), 1132 
GME (notation), 1133 
goldilocks 
    theorem G, 1134 
Gram-Schmidt 
    column vectors 
        theorem GSP, 1135 
    three vectors 
        example GSTV, 1136 
gram-schmidt 
    mathematica, 1137 
GS (technique, section PT), 1138 
GSP (subsection, section O), 1139 
GSP (theorem), 1140 
GSP.MMA (computation, section MMA), 1141 
GSTV (example), 1142 
GT (subsection, section PD), 1143 
H (archetype), 1144 
Hadamard Identity 
    notation, 1145 
                                                                          
                                                                          
Hadamard identity 
    definition HID, 1146 
Hadamard Inverse 
    notation, 1147 
Hadamard inverse 
    definition HI, 1148 
Hadamard Product 
    Diagonalizable Matrices 
        theorem DMHP, 1149 
    notation, 1150 
Hadamard product 
    commutativity 
        theorem HPC, 1151 
    definition HP, 1152 
    diagonal matrices 
        theorem DMMP, 1153 
    distributivity 
        theorem HPDAA, 1154 
    example HP, 1155 
    identity 
        theorem HPHID, 1156 
    inverse 
        theorem HPHI, 1157 
    scalar matrix multiplication 
        theorem HPSMM, 1158 
hermitian 
    definition HM, 1159 
Hermitian matrix 
    inner product 
        theorem HMIP, 1160 
HI (definition), 1161 
HI (notation), 1162 
HID (definition), 1163 
HID (notation), 1164 
HISAA (example), 1165 
HISAD (example), 1166 
HM (definition), 1167 
HM (subsection, section MM), 1168 
                                                                          
                                                                          
HMEM5 (example), 1169 
HMIP (theorem), 1170 
HMOE (theorem), 1171 
HMRE (theorem), 1172 
HMVEI (theorem), 1173 
homogeneous system 
    Archetype C 
        example AHSAC, 1174 
    consistent 
        theorem HSC, 1175 
    definition HS, 1176 
    infinitely many solutions 
        theorem HMVEI, 1177 
homogeneous systems 
    linear independence, 1178 
HP (definition), 1179 
HP (example), 1180 
HP (notation), 1181 
HP (section), 1182 
HPC (theorem), 1183 
HPDAA (theorem), 1184 
HPDM (example), 1185 
HPHI (theorem), 1186 
HPHID (theorem), 1187 
HPSMM (theorem), 1188 
HS (definition), 1189 
HSC (theorem), 1190 
HSE (section), 1191 
HUSAB (example), 1192 
I (archetype), 1193 
I (technique, section PT), 1194 
IAP (example), 1195 
IAR (example), 1196 
IAS (example), 1197 
IAV (example), 1198 
ICBM (theorem), 1199 
                                                                          
                                                                          
ICLT (theorem), 1200 
identities 
    technique PI, 1201 
identity matrix 
    determinant, 1202 
    example IM, 1203 
    notation, 1204 
IDLT (definition), 1205 
IDV (definition), 1206 
IE (definition), 1207 
IE (notation), 1208 
IFDVS (theorem), 1209 
IILT (theorem), 1210 
ILT (definition), 1211 
ILT (diagram), 1212 
ILT (section), 1213 
ILTB (theorem), 1214 
ILTD (subsection, section ILT), 1215 
ILTD (theorem), 1216 
ILTIS (theorem), 1217 
ILTLI (subsection, section ILT), 1218 
ILTLI (theorem), 1219 
ILTLT (theorem), 1220 
ILTVR (example), 1221 
IM (definition), 1222 
IM (example), 1223 
IM (notation), 1224 
IM (subsection, section MISLE), 1225 
IM11 (example), 1226 
IMILT (theorem), 1227 
IMP (definition), 1228 
IMR (theorem), 1229 
inconsistent linear systems 
    theorem ISRN, 1230 
independent, dependent variables 
    definition IDV, 1231 
indesxstring 
    example SM2Z7, 1232 
                                                                          
                                                                          
    example SSET, 1233 
index 
    eigenvalue 
        definition IE, 1234 
        notation, 1235 
indexstring 
    theorem DRCMA, 1236 
    theorem OBUTR, 1237 
    theorem UMCOB, 1238 
induction 
    technique I, 1239 
infinite solution set 
    example ISSI, 1240 
infinite solutions, 3 × 4 
    example IS, 1241 
injective 
    example IAP, 1242 
    example IAR, 1243 
    not 
        example NIAO, 1244 
        example NIAQ, 1245 
        example NIAQR, 1246 
    not, by dimension 
        example NIDAU, 1247 
    polynomials to matrices 
        example IAV, 1248 
injective linear transformation 
    bases 
        theorem ILTB, 1249 
injective linear transformations 
    dimension 
        theorem ILTD, 1250 
inner product 
    anti-commutative 
        theorem IPAC, 1251 
    example CSIP, 1252 
    norm 
        theorem IPN, 1253 
                                                                          
                                                                          
    notation, 1254 
    positive 
        theorem PIP, 1255 
    scalar multiplication 
        theorem IPSM, 1256 
    vector addition 
        theorem IPVA, 1257 
integers 
    mod p 
        definition IMP, 1258 
    mod p, field 
        theorem FIMP, 1259 
    mod 11 
        example IM11, 1260 
interpolating polynomial 
    theorem IP, 1261 
invariant subspace 
    definition IS, 1262 
    eigenspace, 1263 
    eigenspaces 
        example EIS, 1264 
    example TIS, 1265 
    Jordan block 
        example ISJB, 1266 
    kernels of powers 
        theorem KPIS, 1267 
inverse 
    composition of linear transformations 
        theorem ICLT, 1268 
    example CMI, 1269 
    example MI, 1270 
    notation, 1271 
    of a matrix, 1272 
invertible linear transformation 
    defined by invertible matrix 
        theorem IMILT, 1273 
invertible linear transformations 
    composition 
                                                                          
                                                                          
        theorem CIVLT, 1274 
    computing 
        example CIVLT, 1275 
IP (definition), 1276 
IP (notation), 1277 
IP (subsection, section O), 1278 
IP (theorem), 1279 
IPAC (theorem), 1280 
IPN (theorem), 1281 
IPSM (theorem), 1282 
IPVA (theorem), 1283 
IS (definition), 1284 
IS (example), 1285 
IS (section), 1286 
IS (subsection, section IS), 1287 
ISJB (example), 1288 
ISMR4 (example), 1289 
ISMR6 (example), 1290 
isomorphic 
    multiple vector spaces 
        example MIVS, 1291 
    vector spaces 
        example IVSAV, 1292 
isomorphic vector spaces 
    dimension 
        theorem IVSED, 1293 
    example TIVS, 1294 
ISRN (theorem), 1295 
ISSI (example), 1296 
ITMT (theorem), 1297 
IV (subsection, section IVLT), 1298 
IVLT (definition), 1299 
IVLT (section), 1300 
IVLT (subsection, section IVLT), 1301 
IVLT (subsection, section MR), 1302 
IVS (definition), 1303 
IVSAV (example), 1304 
IVSED (theorem), 1305 
                                                                          
                                                                          
J (archetype), 1306 
JB (definition), 1307 
JB (notation), 1308 
JB4 (example), 1309 
JCF (definition), 1310 
JCF (section), 1311 
JCF (subsection, section JCF), 1312 
JCF10 (example), 1313 
JCFLT (theorem), 1314 
Jordan block 
    definition JB, 1315 
    nilpotent 
        theorem NJB, 1316 
    notation, 1317 
    size 4 
        example JB4, 1318 
Jordan canonical form 
    definition JCF, 1319 
    size 10 
        example JCF10, 1320 
K (archetype), 1321 
kernel 
    injective linear transformation 
        theorem KILT, 1322 
    isomorphic to null space 
        theorem KNSI, 1323 
    linear transformation 
        example NKAO, 1324 
    notation, 1325 
    of a linear transformation 
        definition KLT, 1326 
    pre-image, 1327 
    subspace 
        theorem KLTS, 1328 
                                                                          
                                                                          
    trivial 
        example TKAP, 1329 
    via matrix representation 
        example KVMR, 1330 
KILT (theorem), 1331 
KLT (definition), 1332 
KLT (notation), 1333 
KLT (subsection, section ILT), 1334 
KLTS (theorem), 1335 
KNSI (theorem), 1336 
KPI (theorem), 1337 
KPIS (theorem), 1338 
KPLT (theorem), 1339 
KPNLT (example), 1340 
KPNLT (theorem), 1341 
KVMR (example), 1342 
L (archetype), 1343 
L (technique, section PT), 1344 
LA (subsection, section WILA), 1345 
LC (definition), 1346 
LC (section), 1347 
LC (subsection, section LC), 1348 
LC (technique, section PT), 1349 
LCCV (definition), 1350 
LCM (example), 1351 
LDCAA (example), 1352 
LDHS (example), 1353 
LDP4 (example), 1354 
LDRN (example), 1355 
LDS (example), 1356 
LDS (section), 1357 
LDSS (subsection, section LDS), 1358 
least squares 
    minimizes residuals 
        theorem LSMR, 1359 
least squares solution 
                                                                          
                                                                          
    definition LSS, 1360 
left null space 
    as row space, 1361 
    definition LNS, 1362 
    example LNS, 1363 
    notation, 1364 
    subspace 
        theorem LNSMS, 1365 
lemma 
    technique LC, 1366 
LI (definition), 1367 
LI (section), 1368 
LI (subsection, section LISS), 1369 
LIC (example), 1370 
LICAB (example), 1371 
LICV (definition), 1372 
LIHS (example), 1373 
LIM32 (example), 1374 
linear combination 
    system of equations 
        example ABLC, 1375 
    definition LC, 1376 
    definition LCCV, 1377 
    example TLC, 1378 
    linear transformation, 1379 
    matrices 
        example LCM, 1380 
    system of equations 
        example AALC, 1381 
linear combinations 
    solutions to linear systems 
        theorem SLSLC, 1382 
linear dependence 
    more vectors than size 
        theorem MVSLD, 1383 
linear independence 
    definition LI, 1384 
    definition LICV, 1385 
                                                                          
                                                                          
    homogeneous systems 
        theorem LIVHS, 1386 
    injective linear transformation 
        theorem ILTLI, 1387 
    matrices 
        example LIM32, 1388 
    orthogonal, 1389 
    r and n 
        theorem LIVRN, 1390 
linear solve 
    mathematica, 1391 
    sage, 1392 
linear system 
    consistent 
        theorem RCLS, 1393 
    matrix representation 
        definition MRLS, 1394 
        notation, 1395 
linear systems 
    notation 
        example MNSLE, 1396 
        example NSLE, 1397 
linear transformation 
    polynomials to polynomials 
        example LTPP, 1398 
    addition 
        definition LTA, 1399 
        theorem MLTLT, 1400 
        theorem SLTLT, 1401 
    as matrix multiplication 
        example ALTMM, 1402 
    basis of range 
        example BRLT, 1403 
    checking 
        example ALT, 1404 
    composition 
        definition LTC, 1405 
        theorem CLTLT, 1406 
                                                                          
                                                                          
    defined by a matrix 
        example LTM, 1407 
    defined on a basis 
        example LTDB1, 1408 
        example LTDB2, 1409 
        example LTDB3, 1410 
        theorem LTDB, 1411 
    definition LT, 1412 
    identity 
        definition IDLT, 1413 
    injection 
        definition ILT, 1414 
    inverse 
        theorem ILTLT, 1415 
    inverse of inverse 
        theorem IILT, 1416 
    invertible 
        definition IVLT, 1417 
        example AIVLT, 1418 
    invertible, injective and surjective 
        theorem ILTIS, 1419 
    Jordan canonical form 
        theorem JCFLT, 1420 
    kernels of powers 
        theorem KPLT, 1421 
    linear combination 
        theorem LTLC, 1422 
    matrix of, 1423 
        example MFLT, 1424 
        example MOLT, 1425 
    not 
        example NLT, 1426 
    not invertible 
        example ANILT, 1427 
    notation, 1428 
    polynomials to matrices 
        example LTPM, 1429 
    rank plus nullity 
                                                                          
                                                                          
        theorem RPNDD, 1430 
    restriction 
        definition LTR, 1431 
        notation, 1432 
    scalar multiple 
        example SMLT, 1433 
    scalar multiplication 
        definition LTSM, 1434 
    spanning range 
        theorem SSRLT, 1435 
    sum 
        example STLT, 1436 
    surjection 
        definition SLT, 1437 
    vector space of, 1438 
    zero vector 
        theorem LTTZZ, 1439 
linear transformation inverse 
    via matrix representation 
        example ILTVR, 1440 
linear transformation restriction 
    on generalized eigenspace 
        example LTRGE, 1441 
linear transformations 
    compositions 
        example CTLT, 1442 
    from matrices 
        theorem MBLT, 1443 
linearly dependent 
    r < n 
        example LDRN, 1444 
    via homogeneous system 
        example LDHS, 1445 
linearly dependent columns 
    Archetype A 
        example LDCAA, 1446 
linearly dependent set 
    example LDS, 1447 
                                                                          
                                                                          
    linear combinations within 
        theorem DLDS, 1448 
    polynomials 
        example LDP4, 1449 
linearly independent 
    crazy vector space 
        example LIC, 1450 
    extending sets 
        theorem ELIS, 1451 
    polynomials 
        example LIP4, 1452 
    via homogeneous system 
        example LIHS, 1453 
linearly independent columns 
    Archetype B 
        example LICAB, 1454 
linearly independent set 
    example LIS, 1455 
    example LLDS, 1456 
LINM (subsection, section LI), 1457 
LINSB (example), 1458 
LIP4 (example), 1459 
LIS (example), 1460 
LISS (section), 1461 
LISV (subsection, section LI), 1462 
LIVHS (theorem), 1463 
LIVRN (theorem), 1464 
LLDS (example), 1465 
LNS (definition), 1466 
LNS (example), 1467 
LNS (notation), 1468 
LNS (subsection, section FS), 1469 
LNSMS (theorem), 1470 
lower triangular matrix 
    definition LTM, 1471 
LS.MMA (computation, section MMA), 1472 
LS.SAGE (computation, section SAGE), 1473 
LSMR (theorem), 1474 
                                                                          
                                                                          
LSS (definition), 1475 
LT (acronyms, section IVLT), 1476 
LT (chapter), 1477 
LT (definition), 1478 
LT (notation), 1479 
LT (section), 1480 
LT (subsection, section LT), 1481 
LTA (definition), 1482 
LTC (definition), 1483 
LTC (subsection, section LT), 1484 
LTDB (theorem), 1485 
LTDB1 (example), 1486 
LTDB2 (example), 1487 
LTDB3 (example), 1488 
LTLC (subsection, section LT), 1489 
LTLC (theorem), 1490 
LTM (definition), 1491 
LTM (example), 1492 
LTPM (example), 1493 
LTPP (example), 1494 
LTR (definition), 1495 
LTR (notation), 1496 
LTRGE (example), 1497 
LTSM (definition), 1498 
LTTZZ (theorem), 1499 
M (acronyms, section FS), 1500 
M (archetype), 1501 
M (chapter), 1502 
M (definition), 1503 
M (notation), 1504 
MA (definition), 1505 
MA (example), 1506 
MA (notation), 1507 
MACN (Property), 1508 
MAF (Property), 1509 
MAP (subsection, section SVD), 1510 
                                                                          
                                                                          
mathematica 
    gram-schmidt (computation), 1511 
    linear solve (computation), 1512 
    matrix entry (computation), 1513 
    matrix inverse (computation), 1514 
    matrix multiplication (computation), 1515 
    null space (computation), 1516 
    row reduce (computation), 1517 
    transpose of a matrix (computation), 1518 
    vector form of solutions (computation), 1519 
    vector linear combinations (computation), 1520 
mathematical language 
    technique L, 1521 
matrix 
    addition 
        definition MA, 1522 
        notation, 1523 
    augmented 
        definition AM, 1524 
    column space 
        definition CSM, 1525 
    complex conjugate 
        example CCM, 1526 
    definition M, 1527 
    equality 
        definition ME, 1528 
        notation, 1529 
    example AM, 1530 
    identity 
        definition IM, 1531 
    inverse 
        definition MI, 1532 
    nonsingular 
        definition NM, 1533 
    notation, 1534 
    of a linear transformation 
        theorem MLTCV, 1535 
    product 
                                                                          
                                                                          
        example PTM, 1536 
        example PTMEE, 1537 
    product with vector 
        definition MVP, 1538 
    rectangular, 1539 
    row space 
        definition RSM, 1540 
    scalar multiplication 
        definition MSM, 1541 
        notation, 1542 
    singular, 1543 
    square 
        definition SQM, 1544 
    submatrices 
        example SS, 1545 
    submatrix 
        definition SM, 1546 
    symmetric 
        definition SYM, 1547 
    transpose 
        definition TM, 1548 
    unitary 
        definition UM, 1549 
    unitary is invertible 
        theorem UMI, 1550 
    zero 
        definition ZM, 1551 
matrix addition 
    example MA, 1552 
matrix components 
    notation, 1553 
matrix entry 
    mathematica, 1554 
    sage, 1555 
    ti83, 1556 
    ti86, 1557 
matrix inverse 
    Archetype B, 1558 
                                                                          
                                                                          
    computation 
        theorem CINM, 1559 
    mathematica, 1560 
    nonsingular matrix 
        theorem NI, 1561 
    of a matrix inverse 
        theorem MIMI, 1562 
    one-sided 
        theorem OSIS, 1563 
    product 
        theorem SS, 1564 
    sage, 1565 
    scalar multiple 
        theorem MISM, 1566 
    size 2 matrices 
        theorem TTMI, 1567 
    transpose 
        theorem MIT, 1568 
    uniqueness 
        theorem MIU, 1569 
matrix multiplication 
    adjoints 
        theorem MMAD, 1570 
    associativity 
        theorem MMA, 1571 
    complex conjugation 
        theorem MMCC, 1572 
    definition MM, 1573 
    distributivity 
        theorem MMDAA, 1574 
    entry-by-entry 
        theorem EMP, 1575 
    identity matrix 
        theorem MMIM, 1576 
    inner product 
        theorem MMIP, 1577 
    mathematica, 1578 
    noncommutative 
                                                                          
                                                                          
        example MMNC, 1579 
    scalar matrix multiplication 
        theorem MMSMM, 1580 
    systems of linear equations 
        theorem SLEMM, 1581 
    transposes 
        theorem MMT, 1582 
    zero matrix 
        theorem MMZM, 1583 
matrix product 
    as composition of linear transformations 
        example MPMR, 1584 
matrix representation 
    basis of eigenvectors 
        example MRBE, 1585 
    composition of linear transformations 
        theorem MRCLT, 1586 
    definition MR, 1587 
    invertible 
        theorem IMR, 1588 
    multiple of a linear transformation 
        theorem MRMLT, 1589 
    notation, 1590 
    restriction to generalized eigenspace 
        theorem MRRGE, 1591 
    sum of linear transformations 
        theorem MRSLT, 1592 
    theorem FTMR, 1593 
    upper triangular 
        theorem UTMR, 1594 
matrix representations 
    converting with change-of-basis 
        example MRCM, 1595 
    example OLTTR, 1596 
matrix scalar multiplication 
    example MSM, 1597 
matrix vector space 
    dimension 
                                                                          
                                                                          
        theorem DM, 1598 
matrix-adjoint product 
    eigenvalues, eigenvectors 
        theorem EEMAP, 1599 
matrix-vector product 
    example MTV, 1600 
    notation, 1601 
MBC (example), 1602 
MBLT (theorem), 1603 
MC (notation), 1604 
MCC (subsection, section MO), 1605 
MCCN (Property), 1606 
MCF (Property), 1607 
MCN (definition), 1608 
MCN (subsection, section CNO), 1609 
MCSM (example), 1610 
MCT (theorem), 1611 
MD (chapter), 1612 
ME (definition), 1613 
ME (notation), 1614 
ME (subsection, section PEE), 1615 
ME (technique, section PT), 1616 
ME (theorem), 1617 
ME.MMA (computation, section MMA), 1618 
ME.SAGE (computation, section SAGE), 1619 
ME.TI83 (computation, section TI83), 1620 
ME.TI86 (computation, section TI86), 1621 
MEASM (subsection, section MO), 1622 
MFLT (example), 1623 
MI (definition), 1624 
MI (example), 1625 
MI (notation), 1626 
MI.MMA (computation, section MMA), 1627 
MI.SAGE (computation, section SAGE), 1628 
MICN (Property), 1629 
MIF (Property), 1630 
MIMI (theorem), 1631 
MINM (section), 1632 
                                                                          
                                                                          
MISLE (section), 1633 
MISM (theorem), 1634 
MIT (theorem), 1635 
MIU (theorem), 1636 
MIVS (example), 1637 
MLT (subsection, section LT), 1638 
MLTCV (theorem), 1639 
MLTLT (theorem), 1640 
MM (definition), 1641 
MM (section), 1642 
MM (subsection, section MM), 1643 
MM.MMA (computation, section MMA), 1644 
MMA (section), 1645 
MMA (theorem), 1646 
MMAD (theorem), 1647 
MMCC (theorem), 1648 
MMDAA (theorem), 1649 
MMEE (subsection, section MM), 1650 
MMIM (theorem), 1651 
MMIP (theorem), 1652 
MMNC (example), 1653 
MMSMM (theorem), 1654 
MMT (theorem), 1655 
MMZM (theorem), 1656 
MNEM (theorem), 1657 
MNSLE (example), 1658 
MO (section), 1659 
MOLT (example), 1660 
more variables than equations 
    example OSGMD, 1661 
    theorem CMVEI, 1662 
MPMR (example), 1663 
MR (definition), 1664 
MR (notation), 1665 
MR (section), 1666 
MRBE (example), 1667 
MRCB (theorem), 1668 
MRCLT (diagram), 1669 
                                                                          
                                                                          
MRCLT (theorem), 1670 
MRCM (example), 1671 
MRLS (definition), 1672 
MRLS (notation), 1673 
MRMLT (theorem), 1674 
MRRGE (theorem), 1675 
MRS (subsection, section CB), 1676 
MRSLT (theorem), 1677 
MSCN (example), 1678 
MSM (definition), 1679 
MSM (example), 1680 
MSM (notation), 1681 
MTV (example), 1682 
multiplicative associativity 
    complex numbers 
        Property MACN, 1683 
multiplicative closure 
    complex numbers 
        Property MCCN, 1684 
    field 
        Property MCF, 1685 
multiplicative commutativity 
    complex numbers 
        Property CMCN, 1686 
multiplicative inverse 
    complex numbers 
        Property MICN, 1687 
MVNSE (subsection, section RREF), 1688 
MVP (definition), 1689 
MVP (notation), 1690 
MVP (subsection, section MM), 1691 
MVSLD (theorem), 1692 
MWIAA (example), 1693 
N (archetype), 1694 
N (subsection, section O), 1695 
N (technique, section PT), 1696 
                                                                          
                                                                          
NDMS4 (example), 1697 
negation of statements 
    technique N, 1698 
NEM (theorem), 1699 
NI (theorem), 1700 
NIAO (example), 1701 
NIAQ (example), 1702 
NIAQR (example), 1703 
NIDAU (example), 1704 
nilpotent 
    linear transformation 
        definition NLT, 1705 
NILT (diagram), 1706 
NJB (theorem), 1707 
NJB5 (example), 1708 
NKAO (example), 1709 
NLT (definition), 1710 
NLT (example), 1711 
NLT (section), 1712 
NLT (subsection, section NLT), 1713 
NLTFO (subsection, section LT), 1714 
NM (definition), 1715 
NM (example), 1716 
NM (section), 1717 
NM (subsection, section NM), 1718 
NM (subsection, section OD), 1719 
NM62 (example), 1720 
NM64 (example), 1721 
NM83 (example), 1722 
NME1 (theorem), 1723 
NME2 (theorem), 1724 
NME3 (theorem), 1725 
NME4 (theorem), 1726 
NME5 (theorem), 1727 
NME6 (theorem), 1728 
NME7 (theorem), 1729 
NME8 (theorem), 1730 
NME9 (theorem), 1731 
                                                                          
                                                                          
NMI (subsection, section MINM), 1732 
NMLIC (theorem), 1733 
NMPEM (theorem), 1734 
NMRRI (theorem), 1735 
NMTNS (theorem), 1736 
NMUS (theorem), 1737 
NOILT (theorem), 1738 
NOLT (definition), 1739 
NOLT (notation), 1740 
NOM (definition), 1741 
NOM (notation), 1742 
nonsingular 
    columns as basis 
        theorem CNMB, 1743 
nonsingular matrices 
    linearly independent columns 
        theorem NMLIC, 1744 
nonsingular matrix 
    Archetype B 
        example NM, 1745 
    column space, 1746 
    elementary matrices 
        theorem NMPEM, 1747 
    equivalences 
        theorem NME1, 1748 
        theorem NME2, 1749 
        theorem NME3, 1750 
        theorem NME4, 1751 
        theorem NME5, 1752 
        theorem NME6, 1753 
        theorem NME7, 1754 
        theorem NME8, 1755 
        theorem NME9, 1756 
    matrix inverse, 1757 
    null space 
        example NSNM, 1758 
    nullity, 1759 
    product of nonsingular matrices 
                                                                          
                                                                          
        theorem NPNT, 1760 
    rank 
        theorem RNNM, 1761 
    row-reduced 
        theorem NMRRI, 1762 
    trivial null space 
        theorem NMTNS, 1763 
    unique solutions 
        theorem NMUS, 1764 
nonsingular matrix, row-reduced 
    example NSR, 1765 
norm 
    example CNSV, 1766 
    inner product, 1767 
    notation, 1768 
normal matrix 
    definition NRML, 1769 
    example ANM, 1770 
    orthonormal basis, 1771 
notation 
    A, 1772 
    AM, 1773 
    AME, 1774 
    C, 1775 
    CCCV, 1776 
    CCM, 1777 
    CCN, 1778 
    CNA, 1779 
    CNE, 1780 
    CNM, 1781 
    CSM, 1782 
    CV, 1783 
    CVA, 1784 
    CVC, 1785 
    CVE, 1786 
    CVSM, 1787 
    D, 1788 
    DM, 1789 
                                                                          
                                                                          
    DS, 1790 
    ELEM, 1791 
    ES, 1792 
    GES, 1793 
    GME, 1794 
    HI, 1795 
    HID, 1796 
    HP, 1797 
    IE, 1798 
    IM, 1799 
    IP, 1800 
    JB, 1801 
    KLT, 1802 
    LNS, 1803 
    LT, 1804 
    LTR, 1805 
    M, 1806 
    MA, 1807 
    MC, 1808 
    ME, 1809 
    MI, 1810 
    MR, 1811 
    MRLS, 1812 
    MSM, 1813 
    MVP, 1814 
    NOLT, 1815 
    NOM, 1816 
    NSM, 1817 
    NV, 1818 
    RLT, 1819 
    RO, 1820 
    ROLT, 1821 
    ROM, 1822 
    RREFA, 1823 
    RSM, 1824 
    SC, 1825 
    SE, 1826 
    SETM, 1827 
                                                                          
                                                                          
    SI, 1828 
    SM, 1829 
    SRM, 1830 
    SSET, 1831 
    SSV, 1832 
    SU, 1833 
    SUV, 1834 
    T, 1835 
    TM, 1836 
    VR, 1837 
    VSCV, 1838 
    VSM, 1839 
    ZCV, 1840 
    ZM, 1841 
notation for a linear system 
    example NSE, 1842 
NPNT (theorem), 1843 
NRFO (subsection, section MR), 1844 
NRML (definition), 1845 
NRREF (example), 1846 
NS.MMA (computation, section MMA), 1847 
NSAO (example), 1848 
NSAQ (example), 1849 
NSAQR (example), 1850 
NSC2A (example), 1851 
NSC2S (example), 1852 
NSC2Z (example), 1853 
NSDAT (example), 1854 
NSDS (example), 1855 
NSE (example), 1856 
NSEAI (example), 1857 
NSLE (example), 1858 
NSLIL (example), 1859 
NSM (definition), 1860 
NSM (notation), 1861 
NSM (subsection, section HSE), 1862 
NSMS (theorem), 1863 
NSNM (example), 1864 
                                                                          
                                                                          
NSNM (subsection, section NM), 1865 
NSR (example), 1866 
NSS (example), 1867 
NSSLI (subsection, section LI), 1868 
Null space 
    as a span 
        example NSDS, 1869 
null space 
    Archetype I 
        example NSEAI, 1870 
    basis 
        theorem BNS, 1871 
    computation 
        example CNS1, 1872 
        example CNS2, 1873 
    isomorphic to kernel, 1874 
    linearly independent basis 
        example LINSB, 1875 
    mathematica, 1876 
    matrix 
        definition NSM, 1877 
    nonsingular matrix, 1878 
    notation, 1879 
    singular matrix, 1880 
    spanning set 
        example SSNS, 1881 
        theorem SSNS, 1882 
    subspace 
        theorem NSMS, 1883 
null space span, linearly independent 
    Archetype L 
        example NSLIL, 1884 
nullity 
    computing, 1885 
    injective linear transformation 
        theorem NOILT, 1886 
    linear transformation 
        definition NOLT, 1887 
                                                                          
                                                                          
    matrix, 1888 
        definition NOM, 1889 
    notation, 1890, 1891 
    square matrix, 1892 
NV (definition), 1893 
NV (notation), 1894 
NVM (theorem), 1895 
O (archetype), 1896 
O (Property), 1897 
O (section), 1898 
OBC (subsection, section B), 1899 
OBNM (theorem), 1900 
OBUTR (theorem), 1901 
OC (Property), 1902 
OCN (Property), 1903 
OD (section), 1904 
OD (subsection, section OD), 1905 
OD (theorem), 1906 
OF (Property), 1907 
OLTTR (example), 1908 
OM (Property), 1909 
one 
    column vectors 
        Property OC, 1910 
    complex numbers 
        Property OCN, 1911 
    field 
        Property OF, 1912 
    matrices 
        Property OM, 1913 
    vectors 
        Property O, 1914 
ONFV (example), 1915 
ONS (definition), 1916 
ONTV (example), 1917 
orthogonal 
                                                                          
                                                                          
    linear independence 
        theorem OSLI, 1918 
    set 
        example AOS, 1919 
    set of vectors 
        definition OSV, 1920 
    vector pairs 
        definition OV, 1921 
orthogonal vectors 
    example TOV, 1922 
orthonormal 
    definition ONS, 1923 
    matrix columns 
        example OSMC, 1924 
orthonormal basis 
    normal matrix 
        theorem OBNM, 1925 
orthonormal diagonalization 
    theorem OD, 1926 
orthonormal set 
    four vectors 
        example ONFV, 1927 
    three vectors 
        example ONTV, 1928 
OSGMD (example), 1929 
OSIS (theorem), 1930 
OSLI (theorem), 1931 
OSMC (example), 1932 
OSV (definition), 1933 
OV (definition), 1934 
OV (subsection, section O), 1935 
P (appendix), 1936 
P (archetype), 1937 
P (technique, section PT), 1938 
particular solutions 
    example PSHS, 1939 
                                                                          
                                                                          
PCNA (theorem), 1940 
PCVS (example), 1941 
PD (section), 1942 
PDM (section), 1943 
PDM (theorem), 1944 
PEE (section), 1945 
PEEF (theorem), 1946 
PI (definition), 1947 
PI (subsection, section LT), 1948 
PI (technique, section PT), 1949 
PIP (theorem), 1950 
PM (example), 1951 
PM (subsection, section EE), 1952 
PMI (subsection, section MISLE), 1953 
PMM (subsection, section MM), 1954 
PMR (subsection, section MR), 1955 
PNLT (subsection, section NLT), 1956 
POD (section), 1957 
polar decomposition 
    theorem PDM, 1958 
polynomial 
    of a matrix 
        example PM, 1959 
polynomial vector space 
    dimension 
        theorem DP, 1960 
positive semi-definite 
    creating 
        theorem CPSM, 1961 
positive semi-definite matrix 
    definition PSM, 1962 
    eigenvalues 
        theorem EPSM, 1963 
practice 
    technique P, 1964 
pre-image 
    definition PI, 1965 
    kernel 
                                                                          
                                                                          
        theorem KPI, 1966 
pre-images 
    example SPIAS, 1967 
principal axis theorem, 1968 
product of triangular matrices 
    theorem PTMT, 1969 
Property 
    AA, 1970 
    AAC, 1971 
    AACN, 1972 
    AAF, 1973 
    AAM, 1974 
    AC, 1975 
    ACC, 1976 
    ACCN, 1977 
    ACF, 1978 
    ACM, 1979 
    AI, 1980 
    AIC, 1981 
    AICN, 1982 
    AIF, 1983 
    AIM, 1984 
    C, 1985 
    CACN, 1986 
    CAF, 1987 
    CC, 1988 
    CM, 1989 
    CMCN, 1990 
    CMF, 1991 
    DCN, 1992 
    DF, 1993 
    DMAM, 1994 
    DSA, 1995 
    DSAC, 1996 
    DSAM, 1997 
    DVA, 1998 
    DVAC, 1999 
    MACN, 2000 
                                                                          
                                                                          
    MAF, 2001 
    MCCN, 2002 
    MCF, 2003 
    MICN, 2004 
    MIF, 2005 
    O, 2006 
    OC, 2007 
    OCN, 2008 
    OF, 2009 
    OM, 2010 
    SC, 2011 
    SCC, 2012 
    SCM, 2013 
    SMA, 2014 
    SMAC, 2015 
    SMAM, 2016 
    Z, 2017 
    ZC, 2018 
    ZCN, 2019 
    ZF, 2020 
    ZM, 2021 
PSHS (example), 2022 
PSHS (subsection, section LC), 2023 
PSM (definition), 2024 
PSM (section), 2025 
PSM (subsection, section PSM), 2026 
PSM (subsection, section SD), 2027 
PSMSR (theorem), 2028 
PSPHS (theorem), 2029 
PSS (subsection, section SSLE), 2030 
PSSD (theorem), 2031 
PSSLS (theorem), 2032 
PT (section), 2033 
PTFP (example), 2034 
PTM (example), 2035 
PTMEE (example), 2036 
PTMT (theorem), 2037 
                                                                          
                                                                          
Q (archetype), 2038 
R (acronyms, section JCF), 2039 
R (archetype), 2040 
R (chapter), 2041 
R.SAGE (computation, section SAGE), 2042 
range 
    full 
        example FRAN, 2043 
    isomorphic to column space 
        theorem RCSI, 2044 
    linear transformation 
        example RAO, 2045 
    notation, 2046 
    of a linear transformation 
        definition RLT, 2047 
    pre-image 
        theorem RPI, 2048 
    subspace 
        theorem RLTS, 2049 
    surjective linear transformation 
        theorem RSLT, 2050 
    via matrix representation 
        example RVMR, 2051 
rank 
    computing 
        theorem CRN, 2052 
    linear transformation 
        definition ROLT, 2053 
    matrix 
        definition ROM, 2054 
        example RNM, 2055 
    notation, 2056, 2057 
    of transpose 
        example RRTI, 2058 
    square matrix 
                                                                          
                                                                          
        example RNSM, 2059 
    surjective linear transformation 
        theorem ROSLT, 2060 
    transpose 
        theorem RMRT, 2061 
rank one decomposition 
    size 2 
        example ROD2, 2062 
    size 4 
        example ROD4, 2063 
    theorem ROD, 2064 
rank+nullity 
    theorem RPNC, 2065 
RAO (example), 2066 
RCLS (theorem), 2067 
RCSI (theorem), 2068 
RD (subsection, section VS), 2069 
RDS (theorem), 2070 
READ (subsection, section B), 2071 
READ (subsection, section CB), 2072 
READ (subsection, section CRS), 2073 
READ (subsection, section D), 2074 
READ (subsection, section DM), 2075 
READ (subsection, section EE), 2076 
READ (subsection, section FS), 2077 
READ (subsection, section HSE), 2078 
READ (subsection, section ILT), 2079 
READ (subsection, section IVLT), 2080 
READ (subsection, section LC), 2081 
READ (subsection, section LDS), 2082 
READ (subsection, section LI), 2083 
READ (subsection, section LISS), 2084 
READ (subsection, section LT), 2085 
READ (subsection, section MINM), 2086 
READ (subsection, section MISLE), 2087 
READ (subsection, section MM), 2088 
READ (subsection, section MO), 2089 
READ (subsection, section MR), 2090 
                                                                          
                                                                          
READ (subsection, section NM), 2091 
READ (subsection, section O), 2092 
READ (subsection, section PD), 2093 
READ (subsection, section PDM), 2094 
READ (subsection, section PEE), 2095 
READ (subsection, section RREF), 2096 
READ (subsection, section S), 2097 
READ (subsection, section SD), 2098 
READ (subsection, section SLT), 2099 
READ (subsection, section SS), 2100 
READ (subsection, section SSLE), 2101 
READ (subsection, section TSS), 2102 
READ (subsection, section VO), 2103 
READ (subsection, section VR), 2104 
READ (subsection, section VS), 2105 
READ (subsection, section WILA), 2106 
reduced row-echelon form 
    analysis 
        notation, 2107 
    definition RREF, 2108 
    example NRREF, 2109 
    example RREF, 2110 
    extended 
        definition EEF, 2111 
    notation 
        example RREFN, 2112 
    unique 
        theorem RREFU, 2113 
reducing a span 
    example RSC5, 2114 
relation of linear dependence 
    definition RLD, 2115 
    definition RLDCV, 2116 
REM (definition), 2117 
REMEF (theorem), 2118 
REMES (theorem), 2119 
REMRS (theorem), 2120 
RES (example), 2121 
                                                                          
                                                                          
RGEN (theorem), 2122 
rings 
    sage, 2123 
RLD (definition), 2124 
RLDCV (definition), 2125 
RLT (definition), 2126 
RLT (notation), 2127 
RLT (subsection, section IS), 2128 
RLT (subsection, section SLT), 2129 
RLTS (theorem), 2130 
RMRT (theorem), 2131 
RNLT (subsection, section IVLT), 2132 
RNM (example), 2133 
RNM (subsection, section D), 2134 
RNNM (subsection, section D), 2135 
RNNM (theorem), 2136 
RNSM (example), 2137 
RO (definition), 2138 
RO (notation), 2139 
RO (subsection, section RREF), 2140 
ROD (section), 2141 
ROD (theorem), 2142 
ROD2 (example), 2143 
ROD4 (example), 2144 
ROLT (definition), 2145 
ROLT (notation), 2146 
ROM (definition), 2147 
ROM (notation), 2148 
ROSLT (theorem), 2149 
row operations 
    definition RO, 2150 
    elementary matrices, 2151, 2152 
    notation, 2153 
row reduce 
    mathematica, 2154 
    sage, 2155 
    ti83, 2156 
    ti86, 2157 
                                                                          
                                                                          
row space 
    Archetype I 
        example RSAI, 2158 
    as column space, 2159 
    basis 
        example RSB, 2160 
        theorem BRS, 2161 
    matrix, 2162 
    notation, 2163 
    row-equivalent matrices 
        theorem REMRS, 2164 
    subspace 
        theorem RSMS, 2165 
row-equivalent matrices 
    definition REM, 2166 
    example TREM, 2167 
    row space, 2168 
    row spaces 
        example RSREM, 2169 
    theorem REMES, 2170 
row-reduce 
    the verb 
        definition RR, 2171 
row-reduced matrices 
    theorem REMEF, 2172 
RPI (theorem), 2173 
RPNC (theorem), 2174 
RPNDD (theorem), 2175 
RR (definition), 2176 
RR.MMA (computation, section MMA), 2177 
RR.SAGE (computation, section SAGE), 2178 
RR.TI83 (computation, section TI83), 2179 
RR.TI86 (computation, section TI86), 2180 
RREF (definition), 2181 
RREF (example), 2182 
RREF (section), 2183 
RREF (subsection, section RREF), 2184 
RREFA (notation), 2185 
                                                                          
                                                                          
RREFN (example), 2186 
RREFU (theorem), 2187 
RRTI (example), 2188 
RS (example), 2189 
RSAI (example), 2190 
RSB (example), 2191 
RSC4 (example), 2192 
RSC5 (example), 2193 
RSLT (theorem), 2194 
RSM (definition), 2195 
RSM (notation), 2196 
RSM (subsection, section CRS), 2197 
RSMS (theorem), 2198 
RSNS (example), 2199 
RSREM (example), 2200 
RT (subsection, section PD), 2201 
RVMR (example), 2202 
S (archetype), 2203 
S (definition), 2204 
S (example), 2205 
S (section), 2206 
SAA (example), 2207 
SAB (example), 2208 
SABMI (example), 2209 
SAE (example), 2210 
sage 
    eigenspaces (computation), 2211 
    linear solve (computation), 2212 
    matrix entry (computation), 2213 
    matrix inverse (computation), 2214 
    rings (computation), 2215 
    row reduce (computation), 2216 
    transpose of a matrix (computation), 2217 
    vector linear combinations (computation), 2218 
SAGE (section), 2219 
SAN (example), 2220 
                                                                          
                                                                          
SAR (example), 2221 
SAS (section), 2222 
SAV (example), 2223 
SC (definition), 2224 
SC (example), 2225 
SC (notation), 2226 
SC (Property), 2227 
SC (subsection, section S), 2228 
SC (subsection, section SET), 2229 
SC3 (example), 2230 
SCAA (example), 2231 
SCAB (example), 2232 
SCAD (example), 2233 
scalar closure 
    column vectors 
        Property SCC, 2234 
    matrices 
        Property SCM, 2235 
    vectors 
        Property SC, 2236 
scalar multiple 
    matrix inverse, 2237 
scalar multiplication 
    zero scalar 
        theorem ZSSM, 2238 
    zero vector 
        theorem ZVSM, 2239 
    zero vector result 
        theorem SMEZV, 2240 
scalar multiplication associativity 
    column vectors 
        Property SMAC, 2241 
    matrices 
        Property SMAM, 2242 
    vectors 
        Property SMA, 2243 
SCB (theorem), 2244 
SCC (Property), 2245 
                                                                          
                                                                          
SCM (Property), 2246 
SD (section), 2247 
SDS (example), 2248 
SE (definition), 2249 
SE (notation), 2250 
secret sharing 
    6 ways 
        example SS6W, 2251 
SEE (example), 2252 
SEEF (example), 2253 
SER (theorem), 2254 
set 
    cardinality 
        definition C, 2255 
        example CS, 2256 
        notation, 2257 
    complement 
        definition SC, 2258 
        example SC, 2259 
        notation, 2260 
    definition SET, 2261 
    empty 
        definition ES, 2262 
    equality 
        definition SE, 2263 
        notation, 2264 
    intersection 
        definition SI, 2265 
        example SI, 2266 
        notation, 2267 
    membership 
        example SETM, 2268 
        notation, 2269 
    size, 2270 
    subset, 2271 
    union 
        definition SU, 2272 
        example SU, 2273 
                                                                          
                                                                          
        notation, 2274 
SET (definition), 2275 
SET (section), 2276 
SETM (example), 2277 
SETM (notation), 2278 
shoes, 2279 
SHS (subsection, section HSE), 2280 
SI (definition), 2281 
SI (example), 2282 
SI (notation), 2283 
SI (subsection, section IVLT), 2284 
SIM (definition), 2285 
similar matrices 
    equal eigenvalues 
        example EENS, 2286 
    eual eigenvalues 
        theorem SMEE, 2287 
    example SMS3, 2288 
    example SMS5, 2289 
similarity 
    definition SIM, 2290 
    equivalence relation 
        theorem SER, 2291 
singular matrix 
    Archetype A 
        example S, 2292 
    null space 
        example NSS, 2293 
singular matrix, row-reduced 
    example SRR, 2294 
singular value decomposition 
    theorem SVD, 2295 
singular values 
    definition SV, 2296 
SLE (acronyms, section NM), 2297 
SLE (chapter), 2298 
SLE (definition), 2299 
SLE (subsection, section SSLE), 2300 
                                                                          
                                                                          
SLELT (subsection, section IVLT), 2301 
SLEMM (theorem), 2302 
SLSLC (theorem), 2303 
SLT (definition), 2304 
SLT (section), 2305 
SLTB (theorem), 2306 
SLTD (subsection, section SLT), 2307 
SLTD (theorem), 2308 
SLTLT (theorem), 2309 
SM (definition), 2310 
SM (notation), 2311 
SM (subsection, section SD), 2312 
SM2Z7 (example), 2313 
SM32 (example), 2314 
SMA (Property), 2315 
SMAC (Property), 2316 
SMAM (Property), 2317 
SMEE (theorem), 2318 
SMEZV (theorem), 2319 
SMLT (example), 2320 
SMS (theorem), 2321 
SMS3 (example), 2322 
SMS5 (example), 2323 
SMZD (theorem), 2324 
SMZE (theorem), 2325 
SNCM (theorem), 2326 
SO (subsection, section SET), 2327 
socks, 2328 
SOL (subsection, section B), 2329 
SOL (subsection, section CB), 2330 
SOL (subsection, section CRS), 2331 
SOL (subsection, section D), 2332 
SOL (subsection, section DM), 2333 
SOL (subsection, section EE), 2334 
SOL (subsection, section F), 2335 
SOL (subsection, section FS), 2336 
SOL (subsection, section HSE), 2337 
SOL (subsection, section ILT), 2338 
                                                                          
                                                                          
SOL (subsection, section IVLT), 2339 
SOL (subsection, section LC), 2340 
SOL (subsection, section LDS), 2341 
SOL (subsection, section LI), 2342 
SOL (subsection, section LISS), 2343 
SOL (subsection, section LT), 2344 
SOL (subsection, section MINM), 2345 
SOL (subsection, section MISLE), 2346 
SOL (subsection, section MM), 2347 
SOL (subsection, section MO), 2348 
SOL (subsection, section MR), 2349 
SOL (subsection, section NM), 2350 
SOL (subsection, section O), 2351 
SOL (subsection, section PD), 2352 
SOL (subsection, section PDM), 2353 
SOL (subsection, section PEE), 2354 
SOL (subsection, section RREF), 2355 
SOL (subsection, section S), 2356 
SOL (subsection, section SD), 2357 
SOL (subsection, section SLT), 2358 
SOL (subsection, section SS), 2359 
SOL (subsection, section SSLE), 2360 
SOL (subsection, section T), 2361 
SOL (subsection, section TSS), 2362 
SOL (subsection, section VO), 2363 
SOL (subsection, section VR), 2364 
SOL (subsection, section VS), 2365 
SOL (subsection, section WILA), 2366 
solution set 
    Archetype A 
        example SAA, 2367 
    archetype E 
        example SAE, 2368 
    theorem PSPHS, 2369 
solution sets 
    possibilities 
        theorem PSSLS, 2370 
solution vector 
                                                                          
                                                                          
    definition SOLV, 2371 
SOLV (definition), 2372 
solving homogeneous system 
    Archetype A 
        example HISAA, 2373 
    Archetype B 
        example HUSAB, 2374 
    Archetype D 
        example HISAD, 2375 
solving nonlinear equations 
    example STNE, 2376 
SP4 (example), 2377 
span 
    basic 
        example ABS, 2378 
    basis 
        theorem BS, 2379 
    definition SS, 2380 
    definition SSCV, 2381 
    improved 
        example IAS, 2382 
    notation, 2383 
    reducing 
        example RSC4, 2384 
    reduction 
        example RS, 2385 
    removing vectors 
        example COV, 2386 
    reworking elements 
        example RES, 2387 
    set of polynomials 
        example SSP, 2388 
    subspace 
        theorem SSS, 2389 
span of columns 
    Archetype A 
        example SCAA, 2390 
    Archetype B 
                                                                          
                                                                          
        example SCAB, 2391 
    Archetype D 
        example SCAD, 2392 
spanning set 
    crazy vector space 
        example SSC, 2393 
    definition TSVS, 2394 
    matrices 
        example SSM22, 2395 
    more vectors 
        theorem SSLD, 2396 
    polynomials 
        example SSP4, 2397 
SPIAS (example), 2398 
SQM (definition), 2399 
square root 
    eigenvalues, eigenspaces 
        theorem EESR, 2400 
    matrix 
        definition SRM, 2401 
        notation, 2402 
    positive semi-definite matrix 
        theorem PSMSR, 2403 
    unique 
        theorem USR, 2404 
SR (section), 2405 
SRM (definition), 2406 
SRM (notation), 2407 
SRM (subsection, section SR), 2408 
SRR (example), 2409 
SS (definition), 2410 
SS (example), 2411 
SS (section), 2412 
SS (subsection, section LISS), 2413 
SS (theorem), 2414 
SS6W (example), 2415 
SSC (example), 2416 
SSCV (definition), 2417 
                                                                          
                                                                          
SSET (definition), 2418 
SSET (example), 2419 
SSET (notation), 2420 
SSLD (theorem), 2421 
SSLE (section), 2422 
SSM22 (example), 2423 
SSNS (example), 2424 
SSNS (subsection, section SS), 2425 
SSNS (theorem), 2426 
SSP (example), 2427 
SSP4 (example), 2428 
SSRLT (theorem), 2429 
SSS (theorem), 2430 
SSSLT (subsection, section SLT), 2431 
SSV (notation), 2432 
SSV (subsection, section SS), 2433 
standard unit vector 
    notation, 2434 
starting proofs 
    technique GS, 2435 
STLT (example), 2436 
STNE (example), 2437 
SU (definition), 2438 
SU (example), 2439 
SU (notation), 2440 
submatrix 
    notation, 2441 
subset 
    definition SSET, 2442 
    notation, 2443 
subspace 
    as null space 
        example RSNS, 2444 
    characterized 
        example ASC, 2445 
    definition S, 2446 
    in {P}_{4} 
        example SP4, 2447 
                                                                          
                                                                          
    not, additive closure 
        example NSC2A, 2448 
    not, scalar closure 
        example NSC2S, 2449 
    not, zero vector 
        example NSC2Z, 2450 
    testing 
        theorem TSS, 2451 
    trivial 
        definition TS, 2452 
    verification 
        example SC3, 2453 
        example SM32, 2454 
subspaces 
    equal dimension 
        theorem EDYES, 2455 
surjective 
    Archetype N 
        example SAN, 2456 
    example SAR, 2457 
    not 
        example NSAQ, 2458 
        example NSAQR, 2459 
    not, Archetype O 
        example NSAO, 2460 
    not, by dimension 
        example NSDAT, 2461 
    polynomials to matrices 
        example SAV, 2462 
surjective linear transformation 
    bases 
        theorem SLTB, 2463 
surjective linear transformations 
    dimension 
        theorem SLTD, 2464 
SUV (definition), 2465 
SUV (notation), 2466 
SUVB (theorem), 2467 
                                                                          
                                                                          
SUVOS (example), 2468 
SV (definition), 2469 
SVD (section), 2470 
SVD (subsection, section SVD), 2471 
SVD (theorem), 2472 
SVP4 (example), 2473 
SYM (definition), 2474 
SYM (example), 2475 
symmetric matrices 
    theorem SMS, 2476 
symmetric matrix 
    example SYM, 2477 
system of equations 
    vector equality 
        example VESE, 2478 
system of linear equations 
    definition SLE, 2479 
T (archetype), 2480 
T (definition), 2481 
T (notation), 2482 
T (part), 2483 
T (section), 2484 
T (technique, section PT), 2485 
TCSD (example), 2486 
TD (section), 2487 
TD (subsection, section TD), 2488 
TD (theorem), 2489 
TD4 (example), 2490 
TDEE (theorem), 2491 
TDEE6 (example), 2492 
TDSSE (example), 2493 
TDSSE (subsection, section TD), 2494 
technique 
    C, 2495 
    CD, 2496 
    CP, 2497 
                                                                          
                                                                          
    CV, 2498 
    D, 2499 
    DC, 2500 
    E, 2501 
    GS, 2502 
    I, 2503 
    L, 2504 
    LC, 2505 
    ME, 2506 
    N, 2507 
    P, 2508 
    PI, 2509 
    T, 2510 
    U, 2511 
theorem 
    AA, 2512 
    AIP, 2513 
    AISM, 2514 
    AIU, 2515 
    AMA, 2516 
    AMSM, 2517 
    BCS, 2518 
    BIS, 2519 
    BNS, 2520 
    BRS, 2521 
    BS, 2522 
    CB, 2523 
    CCM, 2524 
    CCRA, 2525 
    CCRM, 2526 
    CCT, 2527 
    CFDVS, 2528 
    CFNLT, 2529 
    CHT, 2530 
    CILTI, 2531 
    CINM, 2532 
    CIVLT, 2533 
    CLI, 2534 
                                                                          
                                                                          
    CLTLT, 2535 
    CMVEI, 2536 
    CNMB, 2537 
    COB, 2538 
    CPSM, 2539 
    CRMA, 2540 
    CRMSM, 2541 
    CRN, 2542 
    CRSM, 2543 
    CRVA, 2544 
    CSCS, 2545 
    CSLTS, 2546 
    CSMS, 2547 
    CSNM, 2548 
    CSRN, 2549 
    CSRST, 2550 
    CSS, 2551 
    CUMOS, 2552 
    DC, 2553 
    DCM, 2554 
    DCP, 2555 
    DEC, 2556 
    DED, 2557 
    DEM, 2558 
    DEMMM, 2559 
    DER, 2560 
    DERC, 2561 
    DFS, 2562 
    DGES, 2563 
    DIM, 2564 
    DLDS, 2565 
    DM, 2566 
    DMFE, 2567 
    DMHP, 2568 
    DMMP, 2569 
    DMST, 2570 
    DNLT, 2571 
    DP, 2572 
                                                                          
                                                                          
    DRCM, 2573 
    DRCMA, 2574 
    DRCS, 2575 
    DRMM, 2576 
    DSD, 2577 
    DSFB, 2578 
    DSFOS, 2579 
    DSLI, 2580 
    DSZI, 2581 
    DSZV, 2582 
    DT, 2583 
    DVM, 2584 
    DZRC, 2585 
    EDELI, 2586 
    EDYES, 2587 
    EEMAP, 2588 
    EER, 2589 
    EESR, 2590 
    EIM, 2591 
    EIS, 2592 
    ELIS, 2593 
    EMDRO, 2594 
    EMHE, 2595 
    EMMVP, 2596 
    EMN, 2597 
    EMNS, 2598 
    EMP, 2599 
    EMRCP, 2600 
    EMS, 2601 
    ENLT, 2602 
    EOMP, 2603 
    EOPSS, 2604 
    EPM, 2605 
    EPSM, 2606 
    ERMCP, 2607 
    ESMM, 2608 
    ETM, 2609 
    FIMP, 2610 
                                                                          
                                                                          
    FS, 2611 
    FTMR, 2612 
    FVCS, 2613 
    G, 2614 
    GEK, 2615 
    GESD, 2616 
    GESIS, 2617 
    GSP, 2618 
    HMIP, 2619 
    HMOE, 2620 
    HMRE, 2621 
    HMVEI, 2622 
    HPC, 2623 
    HPDAA, 2624 
    HPHI, 2625 
    HPHID, 2626 
    HPSMM, 2627 
    HSC, 2628 
    ICBM, 2629 
    ICLT, 2630 
    IFDVS, 2631 
    IILT, 2632 
    ILTB, 2633 
    ILTD, 2634 
    ILTIS, 2635 
    ILTLI, 2636 
    ILTLT, 2637 
    IMILT, 2638 
    IMR, 2639 
    IP, 2640 
    IPAC, 2641 
    IPN, 2642 
    IPSM, 2643 
    IPVA, 2644 
    ISRN, 2645 
    ITMT, 2646 
    IVSED, 2647 
    JCFLT, 2648 
                                                                          
                                                                          
    KILT, 2649 
    KLTS, 2650 
    KNSI, 2651 
    KPI, 2652 
    KPIS, 2653 
    KPLT, 2654 
    KPNLT, 2655 
    LIVHS, 2656 
    LIVRN, 2657 
    LNSMS, 2658 
    LSMR, 2659 
    LTDB, 2660 
    LTLC, 2661 
    LTTZZ, 2662 
    MBLT, 2663 
    MCT, 2664 
    ME, 2665 
    MIMI, 2666 
    MISM, 2667 
    MIT, 2668 
    MIU, 2669 
    MLTCV, 2670 
    MLTLT, 2671 
    MMA, 2672 
    MMAD, 2673 
    MMCC, 2674 
    MMDAA, 2675 
    MMIM, 2676 
    MMIP, 2677 
    MMSMM, 2678 
    MMT, 2679 
    MMZM, 2680 
    MNEM, 2681 
    MRCB, 2682 
    MRCLT, 2683 
    MRMLT, 2684 
    MRRGE, 2685 
    MRSLT, 2686 
                                                                          
                                                                          
    MVSLD, 2687 
    NEM, 2688 
    NI, 2689 
    NJB, 2690 
    NME1, 2691 
    NME2, 2692 
    NME3, 2693 
    NME4, 2694 
    NME5, 2695 
    NME6, 2696 
    NME7, 2697 
    NME8, 2698 
    NME9, 2699 
    NMLIC, 2700 
    NMPEM, 2701 
    NMRRI, 2702 
    NMTNS, 2703 
    NMUS, 2704 
    NOILT, 2705 
    NPNT, 2706 
    NSMS, 2707 
    NVM, 2708 
    OBNM, 2709 
    OBUTR, 2710 
    OD, 2711 
    OSIS, 2712 
    OSLI, 2713 
    PCNA, 2714 
    PDM, 2715 
    PEEF, 2716 
    PIP, 2717 
    PSMSR, 2718 
    PSPHS, 2719 
    PSSD, 2720 
    PSSLS, 2721 
    PTMT, 2722 
    RCLS, 2723 
    RCSI, 2724 
                                                                          
                                                                          
    RDS, 2725 
    REMEF, 2726 
    REMES, 2727 
    REMRS, 2728 
    RGEN, 2729 
    RLTS, 2730 
    RMRT, 2731 
    RNNM, 2732 
    ROD, 2733 
    ROSLT, 2734 
    RPI, 2735 
    RPNC, 2736 
    RPNDD, 2737 
    RREFU, 2738 
    RSLT, 2739 
    RSMS, 2740 
    SCB, 2741 
    SER, 2742 
    SLEMM, 2743 
    SLSLC, 2744 
    SLTB, 2745 
    SLTD, 2746 
    SLTLT, 2747 
    SMEE, 2748 
    SMEZV, 2749 
    SMS, 2750 
    SMZD, 2751 
    SMZE, 2752 
    SNCM, 2753 
    SS, 2754 
    SSLD, 2755 
    SSNS, 2756 
    SSRLT, 2757 
    SSS, 2758 
    SUVB, 2759 
    SVD, 2760 
    TD, 2761 
    TDEE, 2762 
                                                                          
                                                                          
    technique T, 2763 
    TIST, 2764 
    TL, 2765 
    TMA, 2766 
    TMSM, 2767 
    TSE, 2768 
    TSRM, 2769 
    TSS, 2770 
    TT, 2771 
    TTMI, 2772 
    UMCOB, 2773 
    UMI, 2774 
    UMPIP, 2775 
    USR, 2776 
    UTMR, 2777 
    VFSLS, 2778 
    VRI, 2779 
    VRILT, 2780 
    VRLT, 2781 
    VRRB, 2782 
    VRS, 2783 
    VSLT, 2784 
    VSPCV, 2785 
    VSPM, 2786 
    ZSSM, 2787 
    ZVSM, 2788 
    ZVU, 2789 
ti83 
    matrix entry (computation), 2790 
    row reduce (computation), 2791 
    vector linear combinations (computation), 2792 
TI83 (section), 2793 
ti86 
    matrix entry (computation), 2794 
    row reduce (computation), 2795 
    transpose of a matrix (computation), 2796 
    vector linear combinations (computation), 2797 
TI86 (section), 2798 
                                                                          
                                                                          
TIS (example), 2799 
TIST (theorem), 2800 
TIVS (example), 2801 
TKAP (example), 2802 
TL (theorem), 2803 
TLC (example), 2804 
TM (definition), 2805 
TM (example), 2806 
TM (notation), 2807 
TM (subsection, section OD), 2808 
TM.MMA (computation, section MMA), 2809 
TM.SAGE (computation, section SAGE), 2810 
TM.TI86 (computation, section TI86), 2811 
TMA (theorem), 2812 
TMP (example), 2813 
TMSM (theorem), 2814 
TOV (example), 2815 
trace 
    definition T, 2816 
    linearity 
        theorem TL, 2817 
    matrix multiplication 
        theorem TSRM, 2818 
    notation, 2819 
    similarity 
        theorem TIST, 2820 
    sum of eigenvalues 
        theorem TSE, 2821 
trail mix 
    example TMP, 2822 
transpose 
    matrix scalar multiplication 
        theorem TMSM, 2823 
    example TM, 2824 
    matrix addition 
        theorem TMA, 2825 
    matrix inverse, 2826, 2827 
    notation, 2828 
                                                                          
                                                                          
    scalar multiplication, 2829 
transpose of a matrix 
    mathematica, 2830 
    sage, 2831 
    ti86, 2832 
transpose of a transpose 
    theorem TT, 2833 
TREM (example), 2834 
triangular decomposition 
    entry by entry, size 6 
        example TDEE6, 2835 
    entry by entry 
        theorem TDEE, 2836 
    size 4 
        example TD4, 2837 
    solving systems of equations 
        example TDSSE, 2838 
    theorem TD, 2839 
triangular matrix 
    inverse 
        theorem ITMT, 2840 
trivial solution 
    system of equations 
        definition TSHSE, 2841 
TS (definition), 2842 
TS (subsection, section S), 2843 
TSE (theorem), 2844 
TSHSE (definition), 2845 
TSM (subsection, section MO), 2846 
TSRM (theorem), 2847 
TSS (section), 2848 
TSS (subsection, section S), 2849 
TSS (theorem), 2850 
TSVS (definition), 2851 
TT (theorem), 2852 
TTMI (theorem), 2853 
TTS (example), 2854 
typical systems, 2 × 2 
                                                                          
                                                                          
    example TTS, 2855 
U (archetype), 2856 
U (technique, section PT), 2857 
UM (definition), 2858 
UM (subsection, section MINM), 2859 
UM3 (example), 2860 
UMCOB (theorem), 2861 
UMI (theorem), 2862 
UMPIP (theorem), 2863 
unique solution, 3 × 3 
    example US, 2864 
    example USR, 2865 
uniqueness 
    technique U, 2866 
unit vectors 
    basis 
        theorem SUVB, 2867 
    definition SUV, 2868 
    orthogonal 
        example SUVOS, 2869 
unitary 
    permutation matrix 
        example UPM, 2870 
    size 3 
        example UM3, 2871 
unitary matrices 
    columns 
        theorem CUMOS, 2872 
unitary matrix 
    inner product 
        theorem UMPIP, 2873 
UPM (example), 2874 
upper triangular matrix 
    definition UTM, 2875 
US (example), 2876 
USR (example), 2877 
                                                                          
                                                                          
USR (theorem), 2878 
UTM (definition), 2879 
UTMR (subsection, section OD), 2880 
UTMR (theorem), 2881 
V (acronyms, section O), 2882 
V (archetype), 2883 
V (chapter), 2884 
VA (example), 2885 
Vandermonde matrix 
    definition VM, 2886 
vandermonde matrix 
    determinant 
        theorem DVM, 2887 
    nonsingular 
        theorem NVM, 2888 
    size 4 
        example VM4, 2889 
VEASM (subsection, section VO), 2890 
vector 
    addition 
        definition CVA, 2891 
    column 
        definition CV, 2892 
    equality 
        definition CVE, 2893 
        notation, 2894 
    inner product 
        definition IP, 2895 
    norm 
        definition NV, 2896 
    notation, 2897 
    of constants 
        definition VOC, 2898 
    product with matrix, 2899, 2900 
    scalar multiplication 
        definition CVSM, 2901 
                                                                          
                                                                          
vector addition 
    example VA, 2902 
vector component 
    notation, 2903 
vector form of solutions 
    Archetype D 
        example VFSAD, 2904 
    Archetype I 
        example VFSAI, 2905 
    Archetype L 
        example VFSAL, 2906 
    example VFS, 2907 
    mathematica, 2908 
    theorem VFSLS, 2909 
vector linear combinations 
    mathematica, 2910 
    sage, 2911 
    ti83, 2912 
    ti86, 2913 
vector representation 
    example AVR, 2914 
    example VRC4, 2915 
    injective 
        theorem VRI, 2916 
    invertible 
        theorem VRILT, 2917 
    linear transformation 
        definition VR, 2918 
        notation, 2919 
        theorem VRLT, 2920 
    surjective 
        theorem VRS, 2921 
    theorem VRRB, 2922 
vector representations 
    polynomials 
        example VRP2, 2923 
vector scalar multiplication 
    example CVSM, 2924 
                                                                          
                                                                          
vector space 
    characterization 
        theorem CFDVS, 2925 
    column vectors 
        definition VSCV, 2926 
    definition VS, 2927 
    infinite dimension 
        example VSPUD, 2928 
    linear transformations 
        theorem VSLT, 2929 
    over integers mod 5 
        example VSIM5, 2930 
vector space of column vectors 
    notation, 2931 
vector space of functions 
    example VSF, 2932 
vector space of infinite sequences 
    example VSIS, 2933 
vector space of matrices 
    definition VSM, 2934 
    example VSM, 2935 
    notation, 2936 
vector space of polynomials 
    example VSP, 2937 
vector space properties 
    column vectors 
        theorem VSPCV, 2938 
    matrices 
        theorem VSPM, 2939 
vector space, crazy 
    example CVS, 2940 
vector space, singleton 
    example VSS, 2941 
vector spaces 
    isomorphic 
        definition IVS, 2942 
        theorem IFDVS, 2943 
VESE (example), 2944 
                                                                          
                                                                          
VFS (example), 2945 
VFSAD (example), 2946 
VFSAI (example), 2947 
VFSAL (example), 2948 
VFSLS (theorem), 2949 
VFSS (subsection, section LC), 2950 
VFSS.MMA (computation, section MMA), 2951 
VLC.MMA (computation, section MMA), 2952 
VLC.SAGE (computation, section SAGE), 2953 
VLC.TI83 (computation, section TI83), 2954 
VLC.TI86 (computation, section TI86), 2955 
VM (definition), 2956 
VM (section), 2957 
VM4 (example), 2958 
VO (section), 2959 
VOC (definition), 2960 
VR (definition), 2961 
VR (notation), 2962 
VR (section), 2963 
VR (subsection, section LISS), 2964 
VRC4 (example), 2965 
VRI (theorem), 2966 
VRILT (theorem), 2967 
VRLT (theorem), 2968 
VRP2 (example), 2969 
VRRB (theorem), 2970 
VRS (theorem), 2971 
VS (acronyms, section PD), 2972 
VS (chapter), 2973 
VS (definition), 2974 
VS (section), 2975 
VS (subsection, section VS), 2976 
VSCV (definition), 2977 
VSCV (example), 2978 
VSCV (notation), 2979 
VSF (example), 2980 
VSIM5 (example), 2981 
VSIS (example), 2982 
                                                                          
                                                                          
VSLT (theorem), 2983 
VSM (definition), 2984 
VSM (example), 2985 
VSM (notation), 2986 
VSP (example), 2987 
VSP (subsection, section MO), 2988 
VSP (subsection, section VO), 2989 
VSP (subsection, section VS), 2990 
VSPCV (theorem), 2991 
VSPM (theorem), 2992 
VSPUD (example), 2993 
VSS (example), 2994 
W (archetype), 2995 
WILA (section), 2996 
X (archetype), 2997 
Z (Property), 2998 
ZC (Property), 2999 
ZCN (Property), 3000 
ZCV (definition), 3001 
ZCV (notation), 3002 
zero 
    complex numbers 
        Property ZCN, 3003 
    field 
        Property ZF, 3004 
zero column vector 
    definition ZCV, 3005 
    notation, 3006 
zero matrix 
    notation, 3007 
zero vector 
    column vectors 
                                                                          
                                                                          
        Property ZC, 3008 
    matrices 
        Property ZM, 3009 
    unique 
        theorem ZVU, 3010 
    vectors 
        Property Z, 3011 
ZF (Property), 3012 
ZM (definition), 3013 
ZM (notation), 3014 
ZM (Property), 3015 
ZNDAB (example), 3016 
ZSSM (theorem), 3017 
ZVSM (theorem), 3018 
ZVU (theorem), 3019