| Symbol | Description | Location | 
| \(A\) | Matrix | Definition M | 
| \(\matrixentry{A}{ij}\) | Matrix Entries | Definition M | 
| \(\vect{v}\) | Column Vector | Definition CV | 
| \(\vectorentry{\vect{v}}{i}\) | Column Vector Entries | Definition CV | 
| \(\zerovector\) | Zero Column Vector | Definition ZCV | 
| \(\linearsystem{A}{\vect{b}}\) | Matrix Representation of a Linear System | Definition MRLS | 
| \(\augmented{A}{\vect{b}}\) | Augmented Matrix | Definition AM | 
| \(\rowopswap{i}{j}\) | Row Operation, Swap | Definition RO | 
| \(\rowopmult{\alpha}{i}\) | Row Operation, Multiply | Definition RO | 
| \(\rowopadd{\alpha}{i}{j}\) | Row Operation, Add | Definition RO | 
| \(r,\ D,\ F\) | Reduced Row-Echelon Form Analysis | Definition RREF | 
| \(\nsp{A}\) | Null Space of a Matrix | Definition NSM | 
| \(I_m\) | Identity Matrix | Definition IM | 
| \(\complex{m}\) | Vector Space of Column Vectors | Definition VSCV | 
| \(\vect{u}=\vect{v}\) | Column Vector Equality | Definition CVE | 
| \(\vect{u}+\vect{v}\) | Column Vector Addition | Definition CVA | 
| \(\alpha\vect{u}\) | Column Vector Scalar Multiplication | Definition CVSM | 
| \(\spn{S}\) | Span of a Set of Vectors | Definition SSCV | 
| \(\conjugate{\vect{u}}\) | Complex Conjugate of a Column Vector | Definition CCCV | 
| \(\innerproduct{\vect{u}}{\vect{v}}\) | Inner Product | Definition IP | 
| \(\norm{\vect{v}}\) | Norm of a Vector | Definition NV | 
| \(\vect{e}_i\) | Standard Unit Vectors | Definition SUV | 
| \(M_{mn}\) | Vector Space of Matrices | Definition VSM | 
| \(A=B\) | Matrix Equality | Definition ME | 
| \(A+B\) | Matrix Addition | Definition MA | 
| \(\alpha A\) | Matrix Scalar Multiplication | Definition MSM | 
| \(\zeromatrix\) | Zero Matrix | Definition ZM | 
| \(\transpose{A}\) | Transpose of a Matrix | Definition TM | 
| \(\conjugate{A}\) | Complex Conjugate of a Matrix | Definition CCM | 
| \(\adjoint{A}\) | Adjoint | Definition A | 
| \(A\vect{u}\) | Matrix-Vector Product | Definition MVP | 
| \(AB\) | Matrix Multiplication | Definition MM | 
| \(\inverse{A}\) | Matrix Inverse | Definition MI | 
| \(\csp{A}\) | Column Space of a Matrix | Definition CSM | 
| \(\rsp{A}\) | Row Space of a Matrix | Definition RSM | 
| \(\lns{A}\) | Left Null Space | Definition LNS | 
| \(U+V\) | Sum of Subspaces | Definition SOS | 
| \(\dimension{V}\) | Dimension | Definition D | 
| \(\nullity{A}\) | Nullity of a Matrix | Definition NOM | 
| \(\rank{A}\) | Rank of a Matrix | Definition ROM | 
| \(\elemswap{i}{j}\) | Elementary Matrix, Swap | Definition ELEM | 
| \(\elemmult{\alpha}{i}\) | Elementary Matrix, Multiply | Definition ELEM | 
| \(\elemadd{\alpha}{i}{j}\) | Elementary Matrix, Add | Definition ELEM | 
| \(\submatrix{A}{i}{j}\) | SubMatrix | Definition SM | 
| \(\detbars{A}\) | Determinant of a Matrix, Bars | Definition DM | 
| \(\detname{A}\) | Determinant of a Matrix, Functional | Definition DM | 
| \(\algmult{A}{\lambda}\) | Algebraic Multiplicity of an Eigenvalue | Definition AME | 
| \(\geomult{A}{\lambda}\) | Geometric Multiplicity of an Eigenvalue | Definition GME | 
| \(\ltdefn{T}{U}{V}\) | Linear Transformation | Definition LT | 
| \(\krn{T}\) | Kernel of a Linear Transformation | Definition KLT | 
| \(\rng{T}\) | Range of a Linear Transformation | Definition RLT | 
| \(\rank{T}\) | Rank of a Linear Transformation | Definition ROLT | 
| \(\nullity{T}\) | Nullity of a Linear Transformation | Definition NOLT | 
| \(\vectrep{B}{\vect{w}}\) | Vector Representation | Definition VR | 
| \(\matrixrep{T}{B}{C}\) | Matrix Representation | Definition MR | 
| \(\alpha=\beta\) | Complex Number Equality | Definition CNE | 
| \(\alpha+\beta\) | Complex Number Addition | Definition CNA | 
| \(\alpha\beta\) | Complex Number Multiplication | Definition CNM | 
| \(\conjugate{\alpha}\) | Conjugate of a Complex Number | Definition CCN | 
| \(x\in S\) | Set Membership | Definition SET | 
| \(S\subseteq T\) | Subset | Definition SSET | 
| \(\emptyset\) | Empty Set | Definition ES | 
| \(S=T\) | Set Equality | Definition SE | 
| \(\card{S}\) | Cardinality | Definition C | 
| \(S\cup T\) | Set Union | Definition SU | 
| \(S\cap T\) | Set Intersection | Definition SI | 
| \(\setcomplement{S}\) | Set Complement | Definition SC |