| Symbol |
Description |
Location |
| \(A\) |
Matrix |
Definition M |
| \(\matrixentry{A}{ij}\) |
Matrix Entries |
Definition M |
| \(\vect{v}\) |
Column Vector |
Definition CV |
| \(\vectorentry{\vect{v}}{i}\) |
Column Vector Entries |
Definition CV |
| \(\zerovector\) |
Zero Column Vector |
Definition ZCV |
| \(\linearsystem{A}{\vect{b}}\) |
Matrix Representation of a Linear System |
Definition MRLS |
| \(\augmented{A}{\vect{b}}\) |
Augmented Matrix |
Definition AM |
| \(\rowopswap{i}{j}\) |
Row Operation, Swap |
Definition RO |
| \(\rowopmult{\alpha}{i}\) |
Row Operation, Multiply |
Definition RO |
| \(\rowopadd{\alpha}{i}{j}\) |
Row Operation, Add |
Definition RO |
| \(r,\ D,\ F\) |
Reduced Row-Echelon Form Analysis |
Definition RREF |
| \(\nsp{A}\) |
Null Space of a Matrix |
Definition NSM |
| \(I_m\) |
Identity Matrix |
Definition IM |
| \(\complex{m}\) |
Vector Space of Column Vectors |
Definition VSCV |
| \(\vect{u}=\vect{v}\) |
Column Vector Equality |
Definition CVE |
| \(\vect{u}+\vect{v}\) |
Column Vector Addition |
Definition CVA |
| \(\alpha\vect{u}\) |
Column Vector Scalar Multiplication |
Definition CVSM |
| \(\spn{S}\) |
Span of a Set of Vectors |
Definition SSCV |
| \(\conjugate{\vect{u}}\) |
Complex Conjugate of a Column Vector |
Definition CCCV |
| \(\innerproduct{\vect{u}}{\vect{v}}\) |
Inner Product |
Definition IP |
| \(\norm{\vect{v}}\) |
Norm of a Vector |
Definition NV |
| \(\vect{e}_i\) |
Standard Unit Vectors |
Definition SUV |
| \(M_{mn}\) |
Vector Space of Matrices |
Definition VSM |
| \(A=B\) |
Matrix Equality |
Definition ME |
| \(A+B\) |
Matrix Addition |
Definition MA |
| \(\alpha A\) |
Matrix Scalar Multiplication |
Definition MSM |
| \(\zeromatrix\) |
Zero Matrix |
Definition ZM |
| \(\transpose{A}\) |
Transpose of a Matrix |
Definition TM |
| \(\conjugate{A}\) |
Complex Conjugate of a Matrix |
Definition CCM |
| \(\adjoint{A}\) |
Adjoint |
Definition A |
| \(A\vect{u}\) |
Matrix-Vector Product |
Definition MVP |
| \(AB\) |
Matrix Multiplication |
Definition MM |
| \(\inverse{A}\) |
Matrix Inverse |
Definition MI |
| \(\csp{A}\) |
Column Space of a Matrix |
Definition CSM |
| \(\rsp{A}\) |
Row Space of a Matrix |
Definition RSM |
| \(\lns{A}\) |
Left Null Space |
Definition LNS |
| \(U+V\) |
Sum of Subspaces |
Definition SOS |
| \(\dimension{V}\) |
Dimension |
Definition D |
| \(\nullity{A}\) |
Nullity of a Matrix |
Definition NOM |
| \(\rank{A}\) |
Rank of a Matrix |
Definition ROM |
| \(\geomult{A}{\lambda}\) |
Geometric Multiplicity of an Eigenvalue |
Definition GME |
| \(\geneigenspace{A}{\lambda}\) |
|
Definition GES |
| \(\algmult{A}{\lambda}\) |
Algebraic Multiplicity of an Eigenvalue |
Definition AME |
| \(\ltdefn{T}{U}{V}\) |
Linear Transformation |
Definition LT |
| \(\krn{T}\) |
Kernel of a Linear Transformation |
Definition KLT |
| \(\rng{T}\) |
Range of a Linear Transformation |
Definition RLT |
| \(\rank{T}\) |
Rank of a Linear Transformation |
Definition ROLT |
| \(\nullity{T}\) |
Nullity of a Linear Transformation |
Definition NOLT |
| \(\vectrep{B}{\vect{w}}\) |
Vector Representation |
Definition VR |
| \(\matrixrep{T}{B}{C}\) |
Matrix Representation |
Definition MR |
| \(\elemswap{i}{j}\) |
Elementary Matrix, Swap |
Definition ELEM |
| \(\elemmult{\alpha}{i}\) |
Elementary Matrix, Multiply |
Definition ELEM |
| \(\elemadd{\alpha}{i}{j}\) |
Elementary Matrix, Add |
Definition ELEM |
| \(\submatrix{A}{i}{j}\) |
SubMatrix |
Definition SM |
| \(\detbars{A}\) |
Determinant of a Matrix, Bars |
Definition DM |
| \(\detname{A}\) |
Determinant of a Matrix, Functional |
Definition DM |
| \(\alpha=\beta\) |
Complex Number Equality |
Definition CNE |
| \(\alpha+\beta\) |
Complex Number Addition |
Definition CNA |
| \(\alpha\beta\) |
Complex Number Multiplication |
Definition CNM |
| \(\conjugate{\alpha}\) |
Conjugate of a Complex Number |
Definition CCN |
| \(x\in S\) |
Set Membership |
Definition SET |
| \(S\subseteq T\) |
Subset |
Definition SSET |
| \(\emptyset\) |
Empty Set |
Definition ES |
| \(S=T\) |
Set Equality |
Definition SE |
| \(\card{S}\) |
Cardinality |
Definition C |
| \(S\cup T\) |
Set Union |
Definition SU |
| \(S\cap T\) |
Set Intersection |
Definition SI |
| \(\setcomplement{S}\) |
Set Complement |
Definition SC |