Symbol |
Description |
Location |
\(A\) |
Matrix |
Definition M |
\(\matrixentry{A}{ij}\) |
Matrix Entries |
Definition M |
\(\vect{v}\) |
Column Vector |
Definition CV |
\(\vectorentry{\vect{v}}{i}\) |
Column Vector Entries |
Definition CV |
\(\zerovector\) |
Zero Column Vector |
Definition ZCV |
\(\linearsystem{A}{\vect{b}}\) |
Matrix Representation of a Linear System |
Definition MRLS |
\(\augmented{A}{\vect{b}}\) |
Augmented Matrix |
Definition AM |
\(\rowopswap{i}{j}\) |
Row Operation, Swap |
Definition RO |
\(\rowopmult{\alpha}{i}\) |
Row Operation, Multiply |
Definition RO |
\(\rowopadd{\alpha}{i}{j}\) |
Row Operation, Add |
Definition RO |
\(r,\ D,\ F\) |
Reduced Row-Echelon Form Analysis |
Definition RREF |
\(\nsp{A}\) |
Null Space of a Matrix |
Definition NSM |
\(I_m\) |
Identity Matrix |
Definition IM |
\(\complex{m}\) |
Vector Space of Column Vectors |
Definition VSCV |
\(\vect{u}=\vect{v}\) |
Column Vector Equality |
Definition CVE |
\(\vect{u}+\vect{v}\) |
Column Vector Addition |
Definition CVA |
\(\alpha\vect{u}\) |
Column Vector Scalar Multiplication |
Definition CVSM |
\(\spn{S}\) |
Span of a Set of Vectors |
Definition SSCV |
\(\conjugate{\vect{u}}\) |
Complex Conjugate of a Column Vector |
Definition CCCV |
\(\innerproduct{\vect{u}}{\vect{v}}\) |
Inner Product |
Definition IP |
\(\norm{\vect{v}}\) |
Norm of a Vector |
Definition NV |
\(\vect{e}_i\) |
Standard Unit Vectors |
Definition SUV |
\(M_{mn}\) |
Vector Space of Matrices |
Definition VSM |
\(A=B\) |
Matrix Equality |
Definition ME |
\(A+B\) |
Matrix Addition |
Definition MA |
\(\alpha A\) |
Matrix Scalar Multiplication |
Definition MSM |
\(\zeromatrix\) |
Zero Matrix |
Definition ZM |
\(\transpose{A}\) |
Transpose of a Matrix |
Definition TM |
\(\conjugate{A}\) |
Complex Conjugate of a Matrix |
Definition CCM |
\(\adjoint{A}\) |
Adjoint |
Definition A |
\(A\vect{u}\) |
Matrix-Vector Product |
Definition MVP |
\(AB\) |
Matrix Multiplication |
Definition MM |
\(\inverse{A}\) |
Matrix Inverse |
Definition MI |
\(\csp{A}\) |
Column Space of a Matrix |
Definition CSM |
\(\rsp{A}\) |
Row Space of a Matrix |
Definition RSM |
\(\lns{A}\) |
Left Null Space |
Definition LNS |
\(U+V\) |
Sum of Subspaces |
Definition SOS |
\(\dimension{V}\) |
Dimension |
Definition D |
\(\nullity{A}\) |
Nullity of a Matrix |
Definition NOM |
\(\rank{A}\) |
Rank of a Matrix |
Definition ROM |
\(\geomult{A}{\lambda}\) |
Geometric Multiplicity of an Eigenvalue |
Definition GME |
\(\geneigenspace{A}{\lambda}\) |
|
Definition GES |
\(\algmult{A}{\lambda}\) |
Algebraic Multiplicity of an Eigenvalue |
Definition AME |
\(\ltdefn{T}{U}{V}\) |
Linear Transformation |
Definition LT |
\(\krn{T}\) |
Kernel of a Linear Transformation |
Definition KLT |
\(\rng{T}\) |
Range of a Linear Transformation |
Definition RLT |
\(\rank{T}\) |
Rank of a Linear Transformation |
Definition ROLT |
\(\nullity{T}\) |
Nullity of a Linear Transformation |
Definition NOLT |
\(\vectrep{B}{\vect{w}}\) |
Vector Representation |
Definition VR |
\(\matrixrep{T}{B}{C}\) |
Matrix Representation |
Definition MR |
\(\elemswap{i}{j}\) |
Elementary Matrix, Swap |
Definition ELEM |
\(\elemmult{\alpha}{i}\) |
Elementary Matrix, Multiply |
Definition ELEM |
\(\elemadd{\alpha}{i}{j}\) |
Elementary Matrix, Add |
Definition ELEM |
\(\submatrix{A}{i}{j}\) |
SubMatrix |
Definition SM |
\(\detbars{A}\) |
Determinant of a Matrix, Bars |
Definition DM |
\(\detname{A}\) |
Determinant of a Matrix, Functional |
Definition DM |
\(\alpha=\beta\) |
Complex Number Equality |
Definition CNE |
\(\alpha+\beta\) |
Complex Number Addition |
Definition CNA |
\(\alpha\beta\) |
Complex Number Multiplication |
Definition CNM |
\(\conjugate{\alpha}\) |
Conjugate of a Complex Number |
Definition CCN |
\(x\in S\) |
Set Membership |
Definition SET |
\(S\subseteq T\) |
Subset |
Definition SSET |
\(\emptyset\) |
Empty Set |
Definition ES |
\(S=T\) |
Set Equality |
Definition SE |
\(\card{S}\) |
Cardinality |
Definition C |
\(S\cup T\) |
Set Union |
Definition SU |
\(S\cap T\) |
Set Intersection |
Definition SI |
\(\setcomplement{S}\) |
Set Complement |
Definition SC |