Linear Algebra in Sage

Linear Algebra Tutorial
Sage Days 15
May 16, 2009

Robert A. Beezer
University of Puget Sound

Solving Systems of Equations

Create a matrix and a vector.
A is a 3\times 3 nonsingular matrix.

b is a 3-slot vector.

\[
A = \begin{bmatrix}
2 & 1 & 1/3 \\
-1 & 6 & 2 \\
1/2 & 1 & 8
\end{bmatrix}
\]

\[
b = \begin{bmatrix}
14/3 \\
2 \\
-6
\end{bmatrix}
\]

Solve \(Ax = b\).

Solve commands ("right" is location of solution vector).

\[
A_1.solve_right(b)
\]

\[
\text{print } A_1.\text{det()}
\]

\[
\text{print } A_1.\text{det()} == 0
\]

\[
A_1.\text{inverse()}
\]

Vectors are rows or columns as appropriate, compute \(A^{-1}b\)

\[
A_1.\text{inverse()}*b
\]

Can "divide" by a matrix

\[
b/A
\]

\[
b/A.\text{transpose()}
\]

Augment and row-reduce

\[
R = A.\text{augment(matrix(b).transpose())}
\]

\[
R.\text{echelon_form()}
\]
Properties of Matrices

\(B \) is a \(6 \times 5 \) matrix of rank 4 over the rationals \(\mathbb{Q} \)

\[
B = \begin{bmatrix}
10,0,3,8,7, \\
-16,-1,-4,-10,-13, \\
-6,1,-3,-6,-6, \\
[0,2,-2,-3,-2], \\
[3,0,1,2,3], \\
[-1,-1,1,1,0]\end{bmatrix}
\]

\(B \)

\(B \).right_kernel()

\(B \).right_kernel().basis()

\(B \).left_kernel().basis()

\(B \).row_space()

\(B \).column_space()

print "Rank", B.rank()
print "Right Nullity", B.right_nullity()
print "Columns", B.ncols()
print
print "Rank", B.rank()
print "Left Nullity", B.left_nullity()
print "Rows", B.nrows()

\(C \) is a random \(50 \times 50 \) matrix over \(\mathbb{Q} \)

\[
C = \text{random_matrix}(\mathbb{Q}, 50, \text{num_bound}=10, \text{den_bound}=10)
\]

\(C \)
Column 5 of the matrix.

```
C[4]
```

Python slicing for entries, show() for looks

```
show(C[20:30, 25:35])
```

```
C.det()
```

```
C.trace()
```

```
C.norm()
```

EigenStuff

D is a 4\times 4 matrix, not diagonalizable

```
D = matrix(QQ, [
    [-2,1,-2,-4],
    [12,1,4,9],
    [6,5,-2,-4],
    [3,-4,5,10]
])
show(D)
```

Build a characteristic polynomial for *D* (then simplify)

```
var('t')
S = D - t*identity_matrix(4)
print S
print
p(t)=S.det()
p(t)
```

```
p.find_root(-10, 10)
```
Easier, but less instructive dots

```
q(t) = D.charpoly('t')
q
```

```
D.eigenvalues()
```

```
diag, evecs = D.eigenmatrix_right()
print "Diagonal matrix with eigenvalues"
print diag
print
print "Matrix with eigenvectors as columns"
print evecs
```

Jordan Canonical Form

```
D.jordan_form()
```

```
J, P = D.jordan_form(transformation = True)
print J
print
print P
```

Check the results

```
P^(-1)*D*P
```

Manipulate the basis for the Jordan form representation

```
Q = P.transpose().gram_schmidt()[0].transpose()
Q
```

Orthogonal?
Q.transpose()*Q

Resulting representation?

Q^(-1)*D*Q

Decompositions

LU, QR, SVD, Jordan Canonical Form, Smith Normal Form, Cholesky Decomposition, \dots

Convert D to a matrix E over the reals (double precision), $\text{Unknown control sequence `\RR'\text{,}}$ to obtain QR decomposition

```
E = D.change_ring(RDF)
E
```

```
ortho, triangular = E.QR()
print "Orthogonal"
print ortho
print
print "Upper Triangular"
print triangular
print
```

Checks

```
(ortho.transpose()*ortho - identity_matrix(4)).norm()
```

```
(ortho*triangular - E).norm()
```

Vector Spaces

Sage is so much more than numerical computation.

Can work naturally with vector spaces and modules over a variety of fields and rings.
F.<a> = FiniteField(3^2)

F

V is a 3-dimensional vector space over F

V=F^3
V

V.list()

"Generator" of all 2-D subspaces of V

subs = V.subspaces(2)

Python "list comprehension"

all_subs = [U for U in subs]

Grab one of the subspaces, #42

all_subs[42]

How many such subspaces?

How many basis matrices in echelon_form?

all_subs[86]

len(all_subs)
\[(3^2)^2 + (3^2)^1 + 1 \]

Accuracy

Octave and Matlab emphasize numerical results - everything is a floating point number.

Their rational form is deceptive. Example by William Stein:

```
octave:1> format rat;
octave:2> a = [-86/17,40/29,-68/43,-20/11;-24/17,-1/38,-2/25,49/17]
a =
   -86/17     40/29    -68/43    -20/11
  -24/17     -1/38     -2/25     49/17
octave:3> rref(a)
ans =
     1      0   155/2122   -725/384
     0      1   -152/173   -6553/795
```

and in Matlab:

```
>> format rat;
>> a = [-86/17,40/29,-68/43,-20/11;-24/17,-1/38,-2/25,49/17]
a =
   -86/17     40/29    -68/43    -20/11
  -24/17     -1/38     -2/25     49/17
>> rref(a)
ans =
     1      0     13/178   -725/384
     0      1   -152/173  -1426/173
```

Now in Sage:
F = matrix(2, [-86/17, 40/29, -68/43, -20/11, -24/17, -1/38, -2/25, 49/17])
show(F.echelon_form())

Entry in lower right corner:

print N(-6553/795, digits = 9), " Octave"
print N(-1426/173, digits=9), " Matlab"
print N(-30037214/3644069, digits = 9), " Sage"

Speed

Matrices with symbolic entries

var('x y')
n=6
entries = [x^i-y^j+i+j for i in range(1,n+1) for j in range(1,n+1)]
G = matrix(SR, n, entries)
G

G.det()
 full_output.txt
G.det().simplify_full()

time G.det()
 full_output.txt

Reals, 53-bit precision

H = random_matrix(RR, 10)
time H.det()

Reals, 200-bit precision

J = random_matrix(RealField(200), 10)
time J.det()
Reals, Interval Arithmetic

```python
K = (1/17.0)*random_matrix(RIF, 10, bound = 10)
time K.det()
```

Reals, Double Precision

```python
L = random_matrix(RDF, 300)
timeit("L.det()")
```

Rationals (Exact)

```python
M = random_matrix(QQ, 800, num_bound = 10, den_bound = 10)
time M.det()
```