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Definition SLE System of Linear Equations 1

A system of linear equations is a collection of m equations in the variable quantities
x1, x2, x3, . . . , xn of the form,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

where the values of aij , bi and xj are from the set of complex numbers, C.
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Definition ESYS Equivalent Systems 2

Two systems of linear equations are equivalent if their solution sets are equal.
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Definition EO Equation Operations 3

Given a system of linear equations, the following three operations will transform the system
into a different one, and each is known as an equation operation.

1. Swap the locations of two equations in the list.

2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to a second
equation, on both sides of the equality. Leave the first equation the same after this
operation, but replace the second equation by the new one.
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Theorem EOPSS Equation Operations Preserve Solution Sets 4

If we apply one of the three equation operations of Definition EO to a system of linear equations
(Definition SLE), then the original system and the transformed system are equivalent.
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Definition M Matrix 5

An m × n matrix is a rectangular layout of numbers from C having m rows and n columns.
We will use upper-case Latin letters from the start of the alphabet (A, B, C, . . . ) to denote
matrices and squared-off brackets to delimit the layout. Many use large parentheses instead of
brackets — the distinction is not important. Rows of a matrix will be referenced starting at the
top and working down (i.e. row 1 is at the top) and columns will be referenced starting from
the left (i.e. column 1 is at the left). For a matrix A, the notation [A]ij will refer to the complex
number in row i and column j of A.
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Definition CV Column Vector 6

A column vector of size m is an ordered list of m numbers, which is written in order vertically,
starting at the top and proceeding to the bottom. At times, we will refer to a column vector as
simply a vector. Column vectors will be written in bold, usually with lower case Latin letter
from the end of the alphabet such as u, v, w, x, y, z. Some books like to write vectors with
arrows, such as ~u. Writing by hand, some like to put arrows on top of the symbol, or a tilde
underneath the symbol, as in u

∼
. To refer to the entry or component that is number i in the

list that is the vector v we write [v]i.
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Definition ZCV Zero Column Vector 7

The zero vector of size m is the column vector of size m where each entry is the number zero,

0 =


0
0
0
...
0


or more compactly, [0]i = 0 for 1 ≤ i ≤ m.
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Definition CM Coefficient Matrix 8

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the coefficient matrix is the m× n matrix

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a3n

...
am1 am2 am3 . . . amn


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Definition VOC Vector of Constants 9

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the vector of constants is the column vector of size m

b =


b1

b2

b3

...
bm


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Definition SV Solution Vector 10

For a system of linear equations,

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

the solution vector is the column vector of size n

x =


x1

x2

x3

...
xn


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Definition LSMR Matrix Representation of a Linear System 11

If A is the coefficient matrix of a system of linear equations and b is the vector of constants,
then we will write LS(A, b) as a shorthand expression for the system of linear equations, which
we will refer to as the matrix representation of the linear system.
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Definition AM Augmented Matrix 12

Suppose we have a system of m equations in n variables, with coefficient matrix A and vector
of constants b. Then the augmented matrix of the system of equations is the m × (n + 1)
matrix whose first n columns are the columns of A and whose last column (number n + 1) is
the column vector b. This matrix will be written as [A | b].
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Definition RO Row Operations 13

The following three operations will transform an m × n matrix into a different matrix of the
same size, and each is known as a row operation.

1. Swap the locations of two rows.

2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the entries in
the same columns of a second row. Leave the first row the same after this operation, but
replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:

1. Ri ↔ Rj : Swap the location of rows i and j.

2. αRi: Multiply row i by the nonzero scalar α.

3. αRi + Rj : Multiply row i by the scalar α and add to row j.
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Definition REM Row-Equivalent Matrices 14

Two matrices, A and B, are row-equivalent if one can be obtained from the other by a
sequence of row operations.
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Theorem REMES Row-Equivalent Matrices represent Equivalent Systems 15

Suppose that A and B are row-equivalent augmented matrices. Then the systems of linear
equations that they represent are equivalent systems.
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Definition RREF Reduced Row-Echelon Form 16

A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. A row where every entry is zero lies below any row that contains a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.

3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row i, column j and
the other located in row s, column t. If s > i, then t > j.

A row of only zero entries will be called a zero row and the leftmost nonzero entry of a nonzero
row will be called a leading 1. The number of nonzero rows will be denoted by r.
A column containing a leading 1 will be called a pivot column. The set of column indices for all
of the pivot columns will be denoted by D = {d1, d2, d3, . . . , dr} where d1 < d2 < d3 < · · · < dr,
while the columns that are not pivot colums will be denoted as F = {f1, f2, f3, . . . , fn−r} where
f1 < f2 < f3 < · · · < fn−r.
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Theorem REMEF Row-Equivalent Matrix in Echelon Form 17

Suppose A is a matrix. Then there is a matrix B so that

1. A and B are row-equivalent.

2. B is in reduced row-echelon form.
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Definition RR Row-Reducing 18

To row-reduce the matrix A means to apply row operations to A and arrive at a row-equivalent
matrix B in reduced row-echelon form.
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Definition CS Consistent System 19

A system of linear equations is consistent if it has at least one solution. Otherwise, the system
is called inconsistent.
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Definition IDV Independent and Dependent Variables 20

Suppose A is the augmented matrix of a consistent system of linear equations and B is a row-
equivalent matrix in reduced row-echelon form. Suppose j is the index of a column of B that
contains the leading 1 for some row (i.e. column j is a pivot column), and this column is not
the last column. Then the variable xj is dependent. A variable that is not dependent is called
independent or free.
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Theorem RCLS Recognizing Consistency of a Linear System 21

Suppose A is the augmented matrix of a system of linear equations with m equations in n
variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not zero rows. Then the system of equations is inconsistent if and only if the
leading 1 of row r is located in column n + 1 of B.
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Theorem ISRN Inconsistent Systems, r and n 22

Suppose A is the augmented matrix of a system of linear equations with m equations in n
variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not completely zeros. If r = n + 1, then the system of equations is inconsistent.
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Theorem CSRN Consistent Systems, r and n 23

Suppose A is the augmented matrix of a consistent system of linear equations with m equations
in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form with
r rows that are not zero rows. Then r ≤ n. If r = n, then the system has a unique solution,
and if r < n, then the system has infinitely many solutions.
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Theorem FVCS Free Variables for Consistent Systems 24

Suppose A is the augmented matrix of a consistent system of linear equations with m equations
in n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon form
with r rows that are not completely zeros. Then the solution set can be described with n − r
free variables.
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Theorem PSSLS Possible Solution Sets for Linear Systems 25

A system of linear equations has no solutions, a unique solution or infinitely many solutions.
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Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions
26

Suppose a consistent system of linear equations has m equations in n variables. If n > m, then
the system has infinitely many solutions.
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Definition HS Homogeneous System 27

A system of linear equations, LS(A, b) is homogeneous if the vector of constants is the zero
vector, in other words, b = 0.
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Theorem HSC Homogeneous Systems are Consistent 28

Suppose that a system of linear equations is homogeneous. Then the system is consistent.
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Definition TSHSE Trivial Solution to Homogeneous Systems of Equations 29

Suppose a homogeneous system of linear equations has n variables. The solution x1 = 0,
x2 = 0,. . . , xn = 0 (i.e. x = 0) is called the trivial solution.
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Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solu-
tions 30

Suppose that a homogeneous system of linear equations has m equations and n variables with
n > m. Then the system has infinitely many solutions.
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Definition NSM Null Space of a Matrix 31

The null space of a matrix A, denoted N (A), is the set of all the vectors that are solutions to
the homogeneous system LS(A, 0).
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Definition SQM Square Matrix 32

A matrix with m rows and n columns is square if m = n. In this case, we say the matrix has
size n. To emphasize the situation when a matrix is not square, we will call it rectangular.
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Definition NM Nonsingular Matrix 33

Suppose A is a square matrix. Suppose further that the solution set to the homogeneous linear
system of equations LS(A, 0) is {0}, i.e. the system has only the trivial solution. Then we say
that A is a nonsingular matrix. Otherwise we say A is a singular matrix.
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Definition IM Identity Matrix 34

The m×m identity matrix, Im, is defined by

[Im]ij =

{
1 i = j

0 i 6= j
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Theorem NMRRI Nonsingular Matrices Row Reduce to the Identity matrix 35

Suppose that A is a square matrix and B is a row-equivalent matrix in reduced row-echelon
form. Then A is nonsingular if and only if B is the identity matrix.
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Theorem NMTNS Nonsingular Matrices have Trivial Null Spaces 36

Suppose that A is a square matrix. Then A is nonsingular if and only if the null space of A,
N (A), contains only the zero vector, i.e. N (A) = {0}.
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Theorem NMUS Nonsingular Matrices and Unique Solutions 37

Suppose that A is a square matrix. A is a nonsingular matrix if and only if the system LS(A, b)
has a unique solution for every choice of the constant vector b.
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Theorem NME1 Nonsingular Matrix Equivalences, Round 1 38

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.
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Definition VSCV Vector Space of Column Vectors 39

The vector space Cm is the set of all column vectors (Definition CV) of size m with entries from
the set of complex numbers, C.
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Definition CVE Column Vector Equality 40

The vectors u and v are equal, written u = v provided that

[u]i = [v]i 1 ≤ i ≤ m
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Definition CVA Column Vector Addition 41

Given the vectors u and v the sum of u and v is the vector u + v defined by

[u + v]i = [u]i + [v]i 1 ≤ i ≤ m
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Definition CVSM Column Vector Scalar Multiplication 42

Given the vector u and the scalar α ∈ C, the scalar multiple of u by α, αu is defined by

[αu]i = α [u]i 1 ≤ i ≤ m
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Theorem VSPCV Vector Space Properties of Column Vectors 43
Suppose that Cm is the set of column vectors of size m (Definition VSCV) with addition and
scalar multiplication as defined in Definition CVA and Definition CVSM. Then

• ACC Additive Closure, Column Vectors If u, v ∈ Cm, then u + v ∈ Cm.

• SCC Scalar Closure, Column Vectors If α ∈ C and u ∈ Cm, then αu ∈ Cm.

• CC Commutativity, Column Vectors If u, v ∈ Cm, then u + v = v + u.

• AAC Additive Associativity, Column Vectors If u, v, w ∈ Cm, then u +
(v + w) = (u + v) + w.

• ZC Zero Vector, Column Vectors There is a vector, 0, called the zero vector, such
that u + 0 = u for all u ∈ Cm.

• AIC Additive Inverses, Column Vectors If u ∈ Cm, then there exists a vector
−u ∈ Cm so that u + (−u) = 0.

• SMAC Scalar Multiplication Associativity, Column Vectors If α, β ∈ C and
u ∈ Cm, then α(βu) = (αβ)u.

• DVAC Distributivity across Vector Addition, Column Vectors If α ∈ C and
u, v ∈ Cm, then α(u + v) = αu + αv.

• DSAC Distributivity across Scalar Addition, Column Vectors If α, β ∈ C and
u ∈ Cm, then (α + β)u = αu + βu.

• OC One, Column Vectors If u ∈ Cm, then 1u = u.
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Definition LCCV Linear Combination of Column Vectors 44

Given n vectors u1, u2, u3, . . . , un from Cm and n scalars α1, α2, α3, . . . , αn, their linear
combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.
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Theorem SLSLC Solutions to Linear Systems are Linear Combinations 45

Denote the columns of the m × n matrix A as the vectors A1, A2, A3, . . . , An. Then x is a
solution to the linear system of equations LS(A, b) if and only if

[x]1 A1 + [x]2 A2 + [x]3 A3 + · · ·+ [x]n An = b
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Theorem VFSLS Vector Form of Solutions to Linear Systems 46

Suppose that [A | b] is the augmented matrix for a consistent linear system LS(A, b) of m
equations in n variables. Let B be a row-equivalent m × (n + 1) matrix in reduced row-
echelon form. Suppose that B has r nonzero rows, columns without leading 1’s with indices
F = {f1, f2, f3, . . . , fn−r, n + 1}, and columns with leading 1’s (pivot columns) having indices
D = {d1, d2, d3, . . . , dr}. Define vectors c, uj , 1 ≤ j ≤ n− r of size n by

[c]i =

{
0 if i ∈ F

[B]k,n+1 if i ∈ D, i = dk

[uj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj
if i ∈ D, i = dk

.

Then the set of solutions to the system of equations LS(A, b) is

S =
{
c + xf1u1 + xf2u2 + xf3u3 + · · ·+ xfn−run−r

∣∣ xf1 , xf2 , xf3 , . . . , xfn−r ∈ C
}
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Theorem PSPHS Particular Solution Plus Homogeneous Solutions 47

Suppose that w is one solution to the linear system of equations LS(A, b). Then y is a solution
to LS(A, b) if and only if y = w + z for some vector z ∈ N (A).
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Theorem RREFU Reduced Row-Echelon Form is Unique 48

Suppose that A is an m×n matrix and that B and C are m×n matrices that are row-equivalent
to A and in reduced row-echelon form. Then B = C.
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Definition SSCV Span of a Set of Column Vectors 49

Given a set of vectors S = {u1, u2, u3, . . . , up}, their span, 〈S〉, is the set of all possible linear
combinations of u1, u2, u3, . . . , up. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αpup | αi ∈ C, 1 ≤ i ≤ p}

=

{
p∑

i=1

αiui

∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ p

}
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Theorem SSNS Spanning Sets for Null Spaces 50

Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the column indices where B has
leading 1’s (pivot columns) and F = {f1, f2, f3, . . . , fn−r} be the set of column indices where
B does not have leading 1’s. Construct the n− r vectors zj , 1 ≤ j ≤ n− r of size n as

[zj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj
if i ∈ D, i = dk

Then the null space of A is given by

N (A) = 〈{z1, z2, z3, . . . , zn−r}〉 .
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Definition RLDCV Relation of Linear Dependence for Column Vectors 51

Given a set of vectors S = {u1, u2, u3, . . . , un}, a true statement of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this statement is formed in a trivial fashion, i.e.
αi = 0, 1 ≤ i ≤ n, then we say it is the trivial relation of linear dependence on S.
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Definition LICV Linear Independence of Column Vectors 52

The set of vectors S = {u1, u2, u3, . . . , un} is linearly dependent if there is a relation
of linear dependence on S that is not trivial. In the case where the only relation of linear
dependence on S is the trivial one, then S is a linearly independent set of vectors.
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Theorem LIVHS Linearly Independent Vectors and Homogeneous Systems 53

Suppose that A is an m× n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors in Cm

that are the columns of A. Then S is a linearly independent set if and only if the homogeneous
system LS(A, 0) has a unique solution.
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Theorem LIVRN Linearly Independent Vectors, r and n 54

Suppose that A is an m× n matrix and S = {A1, A2, A3, . . . , An} is the set of vectors in Cm

that are the columns of A. Let B be a matrix in reduced row-echelon form that is row-equivalent
to A and let r denote the number of non-zero rows in B. Then S is linearly independent if and
only if n = r.
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Theorem MVSLD More Vectors than Size implies Linear Dependence 55

Suppose that S = {u1, u2, u3, . . . , un} is the set of vectors in Cm, and that n > m. Then S is
a linearly dependent set.
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Theorem NMLIC Nonsingular Matrices have Linearly Independent Columns 56

Suppose that A is a square matrix. Then A is nonsingular if and only if the columns of A form
a linearly independent set.
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Theorem NME2 Nonsingular Matrix Equivalences, Round 2 57

Suppose that A is a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A form a linearly independent set.
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Theorem BNS Basis for Null Spaces 58

Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r} be the
sets of column indices where B does and does not (respectively) have leading 1’s. Construct
the n− r vectors zj , 1 ≤ j ≤ n− r of size n as

[zj ]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj
if i ∈ D, i = dk

Define the set S = {z1, z2, z3, . . . , zn−r}. Then

1. N (A) = 〈S〉.

2. S is a linearly independent set.
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Theorem DLDS Dependency in Linearly Dependent Sets 59

Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors. Then S is a linearly dependent set
if and only if there is an index t, 1 ≤ t ≤ n such that ut is a linear combination of the vectors
u1, u2, u3, . . . , ut−1, ut+1, . . . , un.
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Theorem BS Basis of a Span 60

Suppose that S = {v1, v2, v3, . . . , vn} is a set of column vectors. Define W = 〈S〉 and let A
be the matrix whose columns are the vectors from S. Let B be the reduced row-echelon form of
A, with D = {d1, d2, d3, . . . , dr} the set of column indices corresponding to the pivot columns
of B. Then

1. T = {vd1 , vd2 , vd3 , . . . vdr} is a linearly independent set.

2. W = 〈T 〉.
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Definition CCCV Complex Conjugate of a Column Vector 61

Suppose that u is a vector from Cm. Then the conjugate of the vector, u, is defined by

[u]i = [u]i 1 ≤ i ≤ m
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Theorem CRVA Conjugation Respects Vector Addition 62

Suppose x and y are two vectors from Cm. Then

x + y = x + y
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Theorem CRSM Conjugation Respects Vector Scalar Multiplication 63

Suppose x is a vector from Cm, and α ∈ C is a scalar. Then

αx = αx
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Definition IP Inner Product 64

Given the vectors u, v ∈ Cm the inner product of u and v is the scalar quantity in C,

〈u, v〉 = [u]1 [v]1 + [u]2 [v]2 + [u]3 [v]3 + · · ·+ [u]m [v]m =
m∑

i=1

[u]i [v]i
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Theorem IPVA Inner Product and Vector Addition 65

Suppose uv,w ∈ Cm. Then

1. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉
2. 〈u, v + w〉 = 〈u, v〉+ 〈u, w〉
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Theorem IPSM Inner Product and Scalar Multiplication 66

Suppose u, v ∈ Cm and α ∈ C. Then

1. 〈αu, v〉 = α 〈u, v〉
2. 〈u, αv〉 = α 〈u, v〉
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Theorem IPAC Inner Product is Anti-Commutative 67

Suppose that u and v are vectors in Cm. Then 〈u, v〉 = 〈v, u〉.
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Definition NV Norm of a Vector 68

The norm of the vector u is the scalar quantity in C

‖u‖ =
√
|[u]1|

2 + |[u]2|
2 + |[u]3|

2 + · · ·+ |[u]m|
2 =

√√√√ m∑
i=1

|[u]i|
2
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Theorem IPN Inner Products and Norms 69

Suppose that u is a vector in Cm. Then ‖u‖2 = 〈u, u〉.
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Theorem PIP Positive Inner Products 70

Suppose that u is a vector in Cm. Then 〈u, u〉 ≥ 0 with equality if and only if u = 0.
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Definition OV Orthogonal Vectors 71

A pair of vectors, u and v, from Cm are orthogonal if their inner product is zero, that is,
〈u, v〉 = 0.
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Definition OSV Orthogonal Set of Vectors 72

Suppose that S = {u1, u2, u3, . . . , un} is a set of vectors from Cm. Then the set S is or-
thogonal if every pair of different vectors from S is orthogonal, that is 〈ui, uj〉 = 0 whenever
i 6= j.
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Theorem OSLI Orthogonal Sets are Linearly Independent 73

Suppose that S = {u1, u2, u3, . . . , un} is an orthogonal set of nonzero vectors. Then S is
linearly independent.
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Theorem GSPCV Gram-Schmidt Procedure, Column Vectors 74

Suppose that S = {v1, v2, v3, . . . , vp} is a linearly independent set of vectors in Cm. Define
the vectors ui, 1 ≤ i ≤ p by

ui = vi −
〈vi, u1〉
〈u1, u1〉

u1 −
〈vi, u2〉
〈u2, u2〉

u2 −
〈vi, u3〉
〈u3, u3〉

u3 − · · · − 〈vi, ui−1〉
〈ui−1, ui−1〉

ui−1

Then if T = {u1, u2, u3, . . . , up}, then T is an orthogonal set of non-zero vectors, and 〈T 〉 =
〈S〉.

c©2005, 2006 Robert A. Beezer



Definition ONS OrthoNormal Set 75

Suppose S = {u1, u2, u3, . . . , un} is an orthogonal set of vectors such that ‖ui‖ = 1 for all
1 ≤ i ≤ n. Then S is an orthonormal set of vectors.
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Definition VSM Vector Space of m× n Matrices 76

The vector space Mmn is the set of all m × n matrices with entries from the set of complex
numbers.
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Definition ME Matrix Equality 77

The m×n matrices A and B are equal, written A = B provided [A]ij = [B]ij for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.
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Definition MA Matrix Addition 78

Given the m × n matrices A and B, define the sum of A and B as an m × n matrix, written
A + B, according to

[A + B]ij = [A]ij + [B]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n
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Definition MSM Matrix Scalar Multiplication 79

Given the m×n matrix A and the scalar α ∈ C, the scalar multiple of A is an m×n matrix,
written αA and defined according to

[αA]ij = α [A]ij 1 ≤ i ≤ m, 1 ≤ j ≤ n
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Theorem VSPM Vector Space Properties of Matrices 80
Suppose that Mmn is the set of all m× n matrices (Definition VSM) with addition and scalar
multiplication as defined in Definition MA and Definition MSM. Then

• ACM Additive Closure, Matrices If A, B ∈ Mmn, then A + B ∈ Mmn.

• SCM Scalar Closure, Matrices If α ∈ C and A ∈ Mmn, then αA ∈ Mmn.

• CM Commutativity, Matrices If A, B ∈ Mmn, then A + B = B + A.

• AAM Additive Associativity, Matrices If A, B, C ∈ Mmn, then A + (B + C) =
(A + B) + C.

• ZM Zero Vector, Matrices There is a matrix, O, called the zero matrix, such that
A +O = A for all A ∈ Mmn.

• AIM Additive Inverses, Matrices If A ∈ Mmn, then there exists a matrix −A ∈
Mmn so that A + (−A) = O.

• SMAM Scalar Multiplication Associativity, Matrices If α, β ∈ C and A ∈ Mmn,
then α(βA) = (αβ)A.

• DMAM Distributivity across Matrix Addition, Matrices If α ∈ C and A, B ∈
Mmn, then α(A + B) = αA + αB.

• DSAM Distributivity across Scalar Addition, Matrices If α, β ∈ C and A ∈
Mmn, then (α + β)A = αA + βA.

• OM One, Matrices If A ∈ Mmn, then 1A = A.
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Definition ZM Zero Matrix 81

The m× n zero matrix is written as O = Om×n and defined by [O]ij = 0, for all 1 ≤ i ≤ m,
1 ≤ j ≤ n.
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Definition TM Transpose of a Matrix 82

Given an m× n matrix A, its transpose is the n×m matrix At given by[
At

]
ij

= [A]ji , 1 ≤ i ≤ n, 1 ≤ j ≤ m.
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Definition SYM Symmetric Matrix 83

The matrix A is symmetric if A = At.
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Theorem SMS Symmetric Matrices are Square 84

Suppose that A is a symmetric matrix. Then A is square.
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Theorem TMA Transpose and Matrix Addition 85

Suppose that A and B are m× n matrices. Then (A + B)t = At + Bt.
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Theorem TMSM Transpose and Matrix Scalar Multiplication 86

Suppose that α ∈ C and A is an m× n matrix. Then (αA)t = αAt.
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Theorem TT Transpose of a Transpose 87

Suppose that A is an m× n matrix. Then (At)t = A.
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Definition CCM Complex Conjugate of a Matrix 88

Suppose A is an m×n matrix. Then the conjugate of A, written A is an m×n matrix defined
by [

A
]
ij

= [A]ij
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Theorem CRMA Conjugation Respects Matrix Addition 89

Suppose that A and B are m× n matrices. Then A + B = A + B.
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Theorem CRMSM Conjugation Respects Matrix Scalar Multiplication 90

Suppose that α ∈ C and A is an m× n matrix. Then αA = αA.
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Theorem MCT Matrix Conjugation and Transposes 91

Suppose that A is an m× n matrix. Then (At) =
(
A

)t
.
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Definition MVP Matrix-Vector Product 92

Suppose A is an m × n matrix with columns A1, A2, A3, . . . , An and u is a vector of size n.
Then the matrix-vector product of A with u is the linear combination

Au = [u]1 A1 + [u]2 A2 + [u]3 A3 + · · ·+ [u]n An
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Theorem SLEMM Systems of Linear Equations as Matrix Multiplication 93

Solutions to the linear system LS(A, b) are the solutions for x in the vector equation Ax = b.
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Theorem EMMVP Equal Matrices and Matrix-Vector Products 94

Suppose that A and B are m×n matrices such that Ax = Bx for every x ∈ Cn. Then A = B.
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Definition MM Matrix Multiplication 95

Suppose A is an m × n matrix and B is an n × p matrix with columns B1, B2, B3, . . . , Bp.
Then the matrix product of A with B is the m×p matrix where column i is the matrix-vector
product ABi. Symbolically,

AB = A [B1|B2|B3| . . . |Bp] = [AB1|AB2|AB3| . . . |ABp] .
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Theorem EMP Entries of Matrix Products 96

Suppose A is an m× n matrix and B = is an n× p matrix. Then for 1 ≤ i ≤ m, 1 ≤ j ≤ p, the
individual entries of AB are given by

[AB]ij = [A]i1 [B]1j + [A]i2 [B]2j + [A]i3 [B]3j + · · ·+ [A]in [B]nj

=
n∑

k=1

[A]ik [B]kj
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Theorem MMZM Matrix Multiplication and the Zero Matrix 97

Suppose A is an m× n matrix. Then
1. AOn×p = Om×p

2. Op×mA = Op×n
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Theorem MMIM Matrix Multiplication and Identity Matrix 98

Suppose A is an m× n matrix. Then
1. AIn = A
2. ImA = A
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Theorem MMDAA Matrix Multiplication Distributes Across Addition 99

Suppose A is an m× n matrix and B and C are n× p matrices and D is a p× s matrix. Then
1. A(B + C) = AB + AC
2. (B + C)D = BD + CD
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Theorem MMSMM Matrix Multiplication and Scalar Matrix Multiplication 100

Suppose A is an m × n matrix and B is an n × p matrix. Let α be a scalar. Then α(AB) =
(αA)B = A(αB).
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Theorem MMA Matrix Multiplication is Associative 101

Suppose A is an m× n matrix, B is an n× p matrix and D is a p× s matrix. Then A(BD) =
(AB)D.
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Theorem MMIP Matrix Multiplication and Inner Products 102

If we consider the vectors u, v ∈ Cm as m× 1 matrices then

〈u, v〉 = utv
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Theorem MMCC Matrix Multiplication and Complex Conjugation 103

Suppose A is an m× n matrix and B is an n× p matrix. Then AB = A B.
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Theorem MMT Matrix Multiplication and Transposes 104

Suppose A is an m× n matrix and B is an n× p matrix. Then (AB)t = BtAt.
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Definition MI Matrix Inverse 105

Suppose A and B are square matrices of size n such that AB = In and BA = In. Then A is
invertible and B is the inverse of A. In this situation, we write B = A−1.
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Definition SUV Standard Unit Vectors 106

Let ej ∈ Cm denote the column vector that is column j of the m×m identity matrix Im. Then
the set

{e1, e2, e3, . . . , em} = {ej | 1 ≤ j ≤ m}

is the set of standard unit vectors in Cm.
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Theorem TTMI Two-by-Two Matrix Inverse 107

Suppose

A =
[
a b
c d

]
Then A is invertible if and only if ad− bc 6= 0. When A is invertible, we have

A−1 =
1

ad− bc

[
d −b
−c a

]
.
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Theorem CINM Computing the Inverse of a Nonsingular Matrix 108

Suppose A is a nonsingular square matrix of size n. Create the n× 2n matrix M by placing the
n×n identity matrix In to the right of the matrix A. Let N be a matrix that is row-equivalent
to M and in reduced row-echelon form. Finally, let J be the matrix formed from the final n
columns of N . Then AJ = In.
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Theorem MIU Matrix Inverse is Unique 109

Suppose the square matrix A has an inverse. Then A−1 is unique.
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Theorem SS Socks and Shoes 110

Suppose A and B are invertible matrices of size n. Then (AB)−1 = B−1A−1 and AB is an
invertible matrix.
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Theorem MIMI Matrix Inverse of a Matrix Inverse 111

Suppose A is an invertible matrix. Then A−1 is invertible and (A−1)−1 = A.
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Theorem MIT Matrix Inverse of a Transpose 112

Suppose A is an invertible matrix. Then At is invertible and (At)−1 = (A−1)t.
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Theorem MISM Matrix Inverse of a Scalar Multiple 113

Suppose A is an invertible matrix and α is a nonzero scalar. Then (αA)−1 = 1
αA−1 and αA is

invertible.
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Theorem NPNT Nonsingular Product has Nonsingular Terms 114

Suppose that A and B are square matrices of size n and the product AB is nonsingular. Then
A and B are both nonsingular.
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Theorem OSIS One-Sided Inverse is Sufficient 115

Suppose A and B are square matrices of size n such that AB = In. Then BA = In.
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Theorem NI Nonsingularity is Invertibility 116

Suppose that A is a square matrix. Then A is nonsingular if and only if A is invertible.
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Theorem NME3 Nonsingular Matrix Equivalences, Round 3 117

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.
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Theorem SNCM Solution with Nonsingular Coefficient Matrix 118

Suppose that A is nonsingular. Then the unique solution to LS(A, b) is A−1b.
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Definition UM Unitary Matrices 119

Suppose that Q is a square matrix of size n such that
(
Q

)t
Q = In. Then we say Q is unitary.
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Theorem UMI Unitary Matrices are Invertible 120

Suppose that Q is a unitary matrix of size n. Then Q is nonsingular, and Q−1 = (Q)t.
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Theorem CUMOS Columns of Unitary Matrices are Orthonormal Sets 121

Suppose that A is a square matrix of size n with columns S = {A1, A2, A3, . . . , An}. Then A
is a unitary matrix if and only if S is an orthonormal set.
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Theorem UMPIP Unitary Matrices Preserve Inner Products 122

Suppose that Q is a unitary matrix of size n and u and v are two vectors from Cn. Then

〈Qu, Qv〉 = 〈u, v〉 and ‖Qv‖ = ‖v‖
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Definition A Adjoint 123

If A is a square matrix, then its adjoint is AH =
(
A

)t
.
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Definition HM Hermitian Matrix 124

The square matrix A is Hermitian (or self-adjoint) if A =
(
A

)t

c©2005, 2006 Robert A. Beezer



Definition CSM Column Space of a Matrix 125

Suppose that A is an m × n matrix with columns {A1, A2, A3, . . . , An}. Then the column
space of A, written C(A), is the subset of Cm containing all linear combinations of the columns
of A,

C(A) = 〈{A1, A2, A3, . . . , An}〉
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Theorem CSCS Column Spaces and Consistent Systems 126

Suppose A is an m×n matrix and b is a vector of size m. Then b ∈ C(A) if and only if LS(A, b)
is consistent.
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Theorem BCS Basis of the Column Space 127

Suppose that A is an m×n matrix with columns A1, A2, A3, . . . , An, and B is a row-equivalent
matrix in reduced row-echelon form with r nonzero rows. Let D = {d1, d2, d3, . . . , dr} be the
set of column indices where B has leading 1’s. Let T = {Ad1 , Ad2 , Ad3 , . . . , Adr}. Then

1. T is a linearly independent set.

2. C(A) = 〈T 〉.
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Theorem CSNM Column Space of a Nonsingular Matrix 128

Suppose A is a square matrix of size n. Then A is nonsingular if and only if C(A) = Cn.
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Theorem NME4 Nonsingular Matrix Equivalences, Round 4 129

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.
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Definition RSM Row Space of a Matrix 130

Suppose A is an m × n matrix. Then the row space of A, R(A), is the column space of At,
i.e. R(A) = C(At).

c©2005, 2006 Robert A. Beezer



Theorem REMRS Row-Equivalent Matrices have equal Row Spaces 131

Suppose A and B are row-equivalent matrices. Then R(A) = R(B).
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Theorem BRS Basis for the Row Space 132

Suppose that A is a matrix and B is a row-equivalent matrix in reduced row-echelon form. Let
S be the set of nonzero columns of Bt. Then

1. R(A) = 〈S〉.

2. S is a linearly independent set.
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Theorem CSRST Column Space, Row Space, Transpose 133

Suppose A is a matrix. Then C(A) = R(At).
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Definition LNS Left Null Space 134

Suppose A is an m× n matrix. Then the left null space is defined as L(A) = N (At) ⊆ Cm.
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Definition EEF Extended Echelon Form 135

Suppose A is an m×n matrix. Add m new columns to A that together equal an m×m identity
matrix to form an m×(n+m) matrix M . Use row operations to bring M to reduced row-echelon
form and call the result N . N is the extended reduced row-echelon form of A, and we will
standardize on names for five submatrices (B, C, J , K, L) of N .
Let B denote the m×n matrix formed from the first n columns of N and let J denote the m×m
matrix formed from the last m columns of N . Suppose that B has r nonzero rows. Further
partition N by letting C denote the r × n matrix formed from all of the non-zero rows of B.
Let K be the r ×m matrix formed from the first r rows of J , while L will be the (m− r)×m
matrix formed from the bottom m− r rows of J . Pictorially,

M = [A|Im] RREF−−−−→ N = [B|J ] =
[

C K
0 L

]
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Theorem PEEF Properties of Extended Echelon Form 136

Suppose that A is an m× n matrix and that N is its extended echelon form. Then

1. J is nonsingular.

2. B = JA.

3. If x ∈ Cn and y ∈ Cm, then Ax = y if and only if Bx = Jy.

4. C is in reduced row-echelon form, has no zero rows and has r pivot columns.

5. L is in reduced row-echelon form, has no zero rows and has m− r pivot columns.
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Theorem FS Four Subsets 137

Suppose A is an m×n matrix with extended echelon form N . Suppose the reduced row-echelon
form of A has r nonzero rows. Then C is the submatrix of N formed from the first r rows and
the first n columns and L is the submatrix of N formed from the last m columns and the last
m− r rows. Then

1. The null space of A is the null space of C, N (A) = N (C).

2. The row space of A is the row space of C, R(A) = R(C).

3. The column space of A is the null space of L, C(A) = N (L).

4. The left null space of A is the row space of L, L(A) = R(L).
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Definition VS Vector Space 138
Suppose that V is a set upon which we have defined two operations: (1) vector addition,
which combines two elements of V and is denoted by “+”, and (2) scalar multiplication,
which combines a complex number with an element of V and is denoted by juxtaposition. Then
V , along with the two operations, is a vector space if the following ten properties hold.

• AC Additive Closure If u, v ∈ V , then u + v ∈ V .

• SC Scalar Closure If α ∈ C and u ∈ V , then αu ∈ V .

• C Commutativity If u, v ∈ V , then u + v = v + u.

• AA Additive Associativity If u, v, w ∈ V , then u + (v + w) = (u + v) + w.

• Z Zero Vector There is a vector, 0, called the zero vector, such that u + 0 = u for
all u ∈ V .

• AI Additive Inverses If u ∈ V , then there exists a vector−u ∈ V so that u+(−u) = 0.

• SMA Scalar Multiplication Associativity If α, β ∈ C and u ∈ V , then α(βu) =
(αβ)u.

• DVA Distributivity across Vector Addition If α ∈ C and u, v ∈ V , then α(u +
v) = αu + αv.

• DSA Distributivity across Scalar Addition If α, β ∈ C and u ∈ V , then (α+β)u =
αu + βu.

• O One If u ∈ V , then 1u = u.

The objects in V are called vectors, no matter what else they might really be, simply by virtue
of being elements of a vector space.
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Theorem ZVU Zero Vector is Unique 139

Suppose that V is a vector space. The zero vector, 0, is unique.
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Theorem AIU Additive Inverses are Unique 140

Suppose that V is a vector space. For each u ∈ V , the additive inverse, −u, is unique.
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Theorem ZSSM Zero Scalar in Scalar Multiplication 141

Suppose that V is a vector space and u ∈ V . Then 0u = 0.
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Theorem ZVSM Zero Vector in Scalar Multiplication 142

Suppose that V is a vector space and α ∈ C. Then α0 = 0.

c©2005, 2006 Robert A. Beezer



Theorem AISM Additive Inverses from Scalar Multiplication 143

Suppose that V is a vector space and u ∈ V . Then −u = (−1)u.
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Theorem SMEZV Scalar Multiplication Equals the Zero Vector 144

Suppose that V is a vector space and α ∈ C. If αu = 0, then either α = 0 or u = 0.
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Theorem VAC Vector Addition Cancellation 145

Suppose that V is a vector space, and u, v, w ∈ V . If w + u = w + v, then u = v.
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Theorem CSSM Canceling Scalars in Scalar Multiplication 146

Suppose V is a vector space, u, v ∈ V and α is a nonzero scalar from C. If αu = αv, then
u = v.

c©2005, 2006 Robert A. Beezer



Theorem CVSM Canceling Vectors in Scalar Multiplication 147

Suppose V is a vector space, u 6= 0 is a vector in V and α, β ∈ C. If αu = βu, then α = β.
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Definition S Subspace 148

Suppose that V and W are two vector spaces that have identical definitions of vector addition
and scalar multiplication, and that W is a subset of V , W ⊆ V . Then W is a subspace of V .
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Theorem TSS Testing Subsets for Subspaces 149

Suppose that V is a vector space and W is a subset of V , W ⊆ V . Endow W with the same
operations as V . Then W is a subspace if and only if three conditions are met

1. W is non-empty, W 6= ∅.

2. If x ∈ W and y ∈ W , then x + y ∈ W .

3. If α ∈ C and x ∈ W , then αx ∈ W .
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Definition TS Trivial Subspaces 150

Given the vector space V , the subspaces V and {0} are each called a trivial subspace.
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Theorem NSMS Null Space of a Matrix is a Subspace 151

Suppose that A is an m× n matrix. Then the null space of A, N (A), is a subspace of Cn.
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Definition LC Linear Combination 152

Suppose that V is a vector space. Given n vectors u1, u2, u3, . . . , un and n scalars
α1, α2, α3, . . . , αn, their linear combination is the vector

α1u1 + α2u2 + α3u3 + · · ·+ αnun.
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Definition SS Span of a Set 153

Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut}, their span,
〈S〉, is the set of all possible linear combinations of u1, u2, u3, . . . , ut. Symbolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αtut | αi ∈ C, 1 ≤ i ≤ t}

=

{
t∑

i=1

αiui

∣∣∣∣∣ αi ∈ C, 1 ≤ i ≤ t

}
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Theorem SSS Span of a Set is a Subspace 154

Suppose V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , ut} ⊆ V , their span,
〈S〉, is a subspace.
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Theorem CSMS Column Space of a Matrix is a Subspace 155

Suppose that A is an m× n matrix. Then C(A) is a subspace of Cm.
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Theorem RSMS Row Space of a Matrix is a Subspace 156

Suppose that A is an m× n matrix. Then R(A) is a subspace of Cn.
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Theorem LNSMS Left Null Space of a Matrix is a Subspace 157

Suppose that A is an m× n matrix. Then L(A) is a subspace of Cm.
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Definition RLD Relation of Linear Dependence 158

Suppose that V is a vector space. Given a set of vectors S = {u1, u2, u3, . . . , un}, an equation
of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equation is formed in a trivial fashion, i.e.
αi = 0, 1 ≤ i ≤ n, then we say it is a trivial relation of linear dependence on S.
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Definition LI Linear Independence 159

Suppose that V is a vector space. The set of vectors S = {u1, u2, u3, . . . , un} from V is
linearly dependent if there is a relation of linear dependence on S that is not trivial. In the
case where the only relation of linear dependence on S is the trivial one, then S is a linearly
independent set of vectors.
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Definition TSVS To Span a Vector Space 160

Suppose V is a vector space. A subset S of V is a spanning set for V if 〈S〉 = V . In this case,
we also say S spans V .
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Theorem VRRB Vector Representation Relative to a Basis 161

Suppose that V is a vector space and B = {v1, v2, v3, . . . , vm} is a linearly independent set
that spans V . Let w be any vector in V . Then there exist unique scalars a1, a2, a3, . . . , am

such that
w = a1v1 + a2v2 + a3v3 + · · ·+ amvm.
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Definition B Basis 162

Suppose V is a vector space. Then a subset S ⊆ V is a basis of V if it is linearly independent
and spans V .

c©2005, 2006 Robert A. Beezer



Theorem SUVB Standard Unit Vectors are a Basis 163

The set of standard unit vectors for Cm (Definition SUV), B = {e1, e2, e3, . . . , em} =
{ei | 1 ≤ i ≤ m} is a basis for the vector space Cm.
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Theorem CNMB Columns of Nonsingular Matrix are a Basis 164

Suppose that A is a square matrix of size m. Then the columns of A are a basis of Cm if and
only if A is nonsingular.
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Theorem NME5 Nonsingular Matrix Equivalences, Round 5 165

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

c©2005, 2006 Robert A. Beezer

Theorem COB Coordinates and Orthonormal Bases 166

Suppose that B = {v1, v2, v3, . . . , vp} is an orthonormal basis of the subspace W of Cm. For
any w ∈ W ,

w = 〈w, v1〉v1 + 〈w, v2〉v2 + 〈w, v3〉v3 + · · ·+ 〈w, vp〉vp
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Definition D Dimension 167

Suppose that V is a vector space and {v1, v2, v3, . . . , vt} is a basis of V . Then the dimension
of V is defined by dim (V ) = t. If V has no finite bases, we say V has infinite dimension.
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Theorem SSLD Spanning Sets and Linear Dependence 168

Suppose that S = {v1, v2, v3, . . . , vt} is a finite set of vectors which spans the vector space V .
Then any set of t + 1 or more vectors from V is linearly dependent.

c©2005, 2006 Robert A. Beezer



Theorem BIS Bases have Identical Sizes 169

Suppose that V is a vector space with a finite basis B and a second basis C. Then B and C
have the same size.
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Theorem DCM Dimension of Cm 170

The dimension of Cm (Example VSCV) is m.
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Theorem DP Dimension of Pn 171

The dimension of Pn (Example VSP) is n + 1.
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Theorem DM Dimension of Mmn 172

The dimension of Mmn (Example VSM) is mn.
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Definition NOM Nullity Of a Matrix 173

Suppose that A is an m × n matrix. Then the nullity of A is the dimension of the null space
of A, n (A) = dim (N (A)).
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Definition ROM Rank Of a Matrix 174

Suppose that A is an m× n matrix. Then the rank of A is the dimension of the column space
of A, r (A) = dim (C(A)).
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Theorem CRN Computing Rank and Nullity 175

Suppose that A is an m × n matrix and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Then r (A) = r and n (A) = n− r.
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Theorem RPNC Rank Plus Nullity is Columns 176

Suppose that A is an m× n matrix. Then r (A) + n (A) = n.
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Theorem RNNM Rank and Nullity of a Nonsingular Matrix 177

Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. The rank of A is n, r (A) = n.

3. The nullity of A is zero, n (A) = 0.
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Theorem NME6 Nonsingular Matrix Equivalences, Round 6 178
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.
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Theorem ELIS Extending Linearly Independent Sets 179

Suppose V is vector space and S is a linearly independent set of vectors from V . Suppose w is
a vector such that w 6∈ 〈S〉. Then the set S′ = S ∪ {w} is linearly independent.
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Theorem G Goldilocks 180

Suppose that V is a vector space of dimension t. Let S = {v1, v2, v3, . . . , vm} be a set of
vectors from V . Then

1. If m > t, then S is linearly dependent.

2. If m < t, then S does not span V .

3. If m = t and S is linearly independent, then S spans V .

4. If m = t and S spans V , then S is linearly independent.
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Theorem PSSD Proper Subspaces have Smaller Dimension 181

Suppose that U and V are subspaces of the vector space W , such that U ( V . Then dim (U) <
dim (V ).
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Theorem EDYES Equal Dimensions Yields Equal Subspaces 182

Suppose that U and V are subspaces of the vector space W , such that U ⊆ V and dim (U) =
dim (V ). Then U = V .
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Theorem RMRT Rank of a Matrix is the Rank of the Transpose 183

Suppose A is an m× n matrix. Then r (A) = r (At).
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Theorem DFS Dimensions of Four Subspaces 184

Suppose that A is an m × n matrix, and B is a row-equivalent matrix in reduced row-echelon
form with r nonzero rows. Then

1. dim (N (A)) = n− r

2. dim (C(A)) = r

3. dim (R(A)) = r

4. dim (L(A)) = m− r
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Definition ELEM Elementary Matrices 185

1. Ei,j is the square matrix of size n with

[Ei,j ]k` =



0 k 6= i, k 6= j, ` 6= k

1 k 6= i, k 6= j, ` = k

0 k = i, ` 6= j

1 k = i, ` = j

0 k = j, ` 6= i

1 k = j, ` = i

2. Ei (α), for α 6= 0, is the square matrix of size n with

[Ei (α)]k` =


0 k 6= i, ` 6= k

1 k 6= i, ` = k

α k = i, ` = i

3. Ei,j (α) is the square matrix of size n with

[Ei,j (α)]k` =



0 k 6= j, ` 6= k

1 k 6= j, ` = k

0 k = j, ` 6= i, ` 6= j

1 k = j, ` = j

α k = j, ` = i
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Theorem EMDRO Elementary Matrices Do Row Operations 186

Suppose that A is a matrix, and B is a matrix of the same size that is obtained from A by a
single row operation (Definition RO).

1. If the row operation swaps rows i and j, then B = Ei,jA.

2. If the row operation multiplies row i by α, then B = Ei (α) A.

3. If the row operation multiplies row i by α and adds the result to row j, then B = Ei,j (α) A.
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Theorem EMN Elementary Matrices are Nonsingular 187

If E is an elementary matrix, then E is nonsingular.
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Theorem NMPEM Nonsingular Matrices are Products of Elementary Matrices
188

Suppose that A is a nonsingular matrix. Then there exists elementary matrices
E1, E2, E3, . . . , Et so that A = E1E2E3 . . . Et.
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Definition SM SubMatrix 189

Suppose that A is an m×n matrix. Then the submatrix A (i|j) is the (m−1)× (n−1) matrix
obtained from A by removing row i and column j.
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Definition DM Determinant of a Matrix 190

Suppose A is a square matrix. Then its determinant, det (A) = |A|, is an element of C defined
recursively by:

If A is a 1× 1 matrix, then det (A) = [A]11.

If A is a matrix of size n with n ≥ 2, then

det (A) = [A]11 det (A (1|1))− [A]12 det (A (1|2)) + [A]13 det (A (1|3))−
[A]14 det (A (1|4)) + · · ·+ (−1)n+1 [A]1n det (A (1|n))
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Theorem DMST Determinant of Matrices of Size Two 191

Suppose that A =
[
a b
c d

]
. Then det (A) = ad− bc
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Theorem DER Determinant Expansion about Rows 192

Suppose that A is a square matrix of size n. Then

det (A) = (−1)i+1 [A]i1 det (A (i|1)) + (−1)i+2 [A]i2 det (A (i|2))

+ (−1)i+3 [A]i3 det (A (i|3)) + · · ·+ (−1)i+n [A]in det (A (i|n)) 1 ≤ i ≤ n

which is known as expansion about row i.
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Theorem DT Determinant of the Transpose 193

Suppose that A is a square matrix. Then det (At) = det (A).
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Theorem DEC Determinant Expansion about Columns 194

Suppose that A is a square matrix of size n. Then

det (A) = (−1)1+j [A]1j det (A (1|j)) + (−1)2+j [A]2j det (A (2|j))

+ (−1)3+j [A]3j det (A (3|j)) + · · ·+ (−1)n+j [A]nj det (A (n|j)) 1 ≤ j ≤ n

which is known as expansion about column j.
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Theorem DZRC Determinant with Zero Row or Column 195

Suppose that A is a square matrix with a row where every entry is zero, or a column where
every entry is zero. Then det (A) = 0.
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Theorem DRCS Determinant for Row or Column Swap 196

Suppose that A is a square matrix. Let B be the square matrix obtained from A by in-
terchanging the location of two rows, or interchanging the location of two columns. Then
det (B) = −det (A).
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Theorem DRCM Determinant for Row or Column Multiples 197

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying
a single row by the scalar α, or by multiplying a single column by the scalar α. Then det (B) =
α det (A).
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Theorem DERC Determinant with Equal Rows or Columns 198

Suppose that A is a square matrix with two equal rows, or two equal columns. Then det (A) = 0.

c©2005, 2006 Robert A. Beezer



Theorem DRCMA Determinant for Row or Column Multiples and Addition 199

Suppose that A is a square matrix. Let B be the square matrix obtained from A by multiplying
a row by the scalar α and then adding it to another row, or by multiplying a column by the
scalar α and then adding it to another column. Then det (B) = det (A).
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Theorem DIM Determinant of the Identity Matrix 200

For every n ≥ 1, det (In) = 1.
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Theorem DEM Determinants of Elementary Matrices 201

For the three possible versions of an elementary matrix (Definition ELEM) we have the deter-
minants,

1. det (Ei,j) = −1

2. det (Ei (α)) = α

3. det (Ei,j (α)) = 1
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Theorem DEMMM Determinants, Elementary Matrices, Matrix Multiplication
202

Suppose that A is a square matrix of size n and E is any elementary matrix of size n. Then

det (EA) = det (E) det (A)
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Theorem SMZD Singular Matrices have Zero Determinants 203

Let A be a square matrix. Then A is singular if and only if det (A) = 0.
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Theorem NME7 Nonsingular Matrix Equivalences, Round 7 204
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.
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Theorem DRMM Determinant Respects Matrix Multiplication 205

Suppose that A and B are square matrices of the same size. Then det (AB) = det (A) det (B).
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Definition EEM Eigenvalues and Eigenvectors of a Matrix 206

Suppose that A is a square matrix of size n, x 6= 0 is a vector in Cn, and λ is a scalar in C.
Then we say x is an eigenvector of A with eigenvalue λ if

Ax = λx
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Theorem EMHE Every Matrix Has an Eigenvalue 207

Suppose A is a square matrix. Then A has at least one eigenvalue.
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Definition CP Characteristic Polynomial 208

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A is the
polynomial pA (x) defined by

pA (x) = det (A− xIn)
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Theorem EMRCP Eigenvalues of a Matrix are Roots of Characteristic Polynomi-
als 209

Suppose A is a square matrix. Then λ is an eigenvalue of A if and only if pA (λ) = 0.
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Definition EM Eigenspace of a Matrix 210

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the eigenspace of A for
λ, EA (λ), is the set of all the eigenvectors of A for λ, together with the inclusion of the zero
vector.
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Theorem EMS Eigenspace for a Matrix is a Subspace 211

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then the eigenspace EA (λ)
is a subspace of the vector space Cn.
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Theorem EMNS Eigenspace of a Matrix is a Null Space 212

Suppose A is a square matrix of size n and λ is an eigenvalue of A. Then

EA (λ) = N (A− λIn)
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Definition AME Algebraic Multiplicity of an Eigenvalue 213

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the algebraic multiplicity
of λ, αA (λ), is the highest power of (x− λ) that divides the characteristic polynomial, pA (x).
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Definition GME Geometric Multiplicity of an Eigenvalue 214

Suppose that A is a square matrix and λ is an eigenvalue of A. Then the geometric multi-
plicity of λ, γA (λ), is the dimension of the eigenspace EA (λ).
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Theorem EDELI Eigenvectors with Distinct Eigenvalues are Linearly Independent
215

Suppose that A is an n×n square matrix and S = {x1, x2, x3, . . . , xp} is a set of eigenvectors
with eigenvalues λ1, λ2, λ3, . . . , λp such that λi 6= λj whenever i 6= j. Then S is a linearly
independent set.
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Theorem SMZE Singular Matrices have Zero Eigenvalues 216

Suppose A is a square matrix. Then A is singular if and only if λ = 0 is an eigenvalue of A.
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Theorem NME8 Nonsingular Matrix Equivalences, Round 8 217
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.
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Theorem ESMM Eigenvalues of a Scalar Multiple of a Matrix 218

Suppose A is a square matrix and λ is an eigenvalue of A. Then αλ is an eigenvalue of αA.
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Theorem EOMP Eigenvalues Of Matrix Powers 219

Suppose A is a square matrix, λ is an eigenvalue of A, and s ≥ 0 is an integer. Then λs is an
eigenvalue of As.
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Theorem EPM Eigenvalues of the Polynomial of a Matrix 220

Suppose A is a square matrix and λ is an eigenvalue of A. Let q(x) be a polynomial in the
variable x. Then q(λ) is an eigenvalue of the matrix q(A).
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Theorem EIM Eigenvalues of the Inverse of a Matrix 221

Suppose A is a square nonsingular matrix and λ is an eigenvalue of A. Then 1
λ is an eigenvalue

of the matrix A−1.
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Theorem ETM Eigenvalues of the Transpose of a Matrix 222

Suppose A is a square matrix and λ is an eigenvalue of A. Then λ is an eigenvalue of the matrix
At.
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Theorem ERMCP Eigenvalues of Real Matrices come in Conjugate Pairs 223

Suppose A is a square matrix with real entries and x is an eigenvector of A for the eigenvalue
λ. Then x is an eigenvector of A for the eigenvalue λ.
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Theorem DCP Degree of the Characteristic Polynomial 224

Suppose that A is a square matrix of size n. Then the characteristic polynomial of A, pA (x),
has degree n.
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Theorem NEM Number of Eigenvalues of a Matrix 225

Suppose that A is a square matrix of size n with distinct eigenvalues λ1, λ2, λ3, . . . , λk. Then

k∑
i=1

αA (λi) = n
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Theorem ME Multiplicities of an Eigenvalue 226

Suppose that A is a square matrix of size n and λ is an eigenvalue. Then

1 ≤ γA (λ) ≤ αA (λ) ≤ n
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Theorem MNEM Maximum Number of Eigenvalues of a Matrix 227

Suppose that A is a square matrix of size n. Then A cannot have more than n distinct eigen-
values.
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Theorem HMRE Hermitian Matrices have Real Eigenvalues 228

Suppose that A is a Hermitian matrix and λ is an eigenvalue of A. Then λ ∈ R.
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Theorem HMOE Hermitian Matrices have Orthogonal Eigenvectors 229

Suppose that A is a Hermitian matrix and x and y are two eigenvectors of A for different
eigenvalues. Then x and y are orthogonal vectors.
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Definition SIM Similar Matrices 230

Suppose A and B are two square matrices of size n. Then A and B are similar if there exists
a nonsingular matrix of size n, S, such that A = S−1BS.
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Theorem SER Similarity is an Equivalence Relation 231

Suppose A, B and C are square matrices of size n. Then

1. A is similar to A. (Reflexive)

2. If A is similar to B, then B is similar to A. (Symmetric)

3. If A is similar to B and B is similar to C, then A is similar to C. (Transitive)
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Theorem SMEE Similar Matrices have Equal Eigenvalues 232

Suppose A and B are similar matrices. Then the characteristic polynomials of A and B are
equal, that is pA (x) = pB (x).
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Definition DIM Diagonal Matrix 233

Suppose that A is a square matrix. Then A is a diagonal matrix if [A]ij = 0 whenever i 6= j.
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Definition DZM Diagonalizable Matrix 234

Suppose A is a square matrix. Then A is diagonalizable if A is similar to a diagonal matrix.
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Theorem DC Diagonalization Characterization 235

Suppose A is a square matrix of size n. Then A is diagonalizable if and only if there exists a
linearly independent set S that contains n eigenvectors of A.
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Theorem DMFE Diagonalizable Matrices have Full Eigenspaces 236

Suppose A is a square matrix. Then A is diagonalizable if and only if γA (λ) = αA (λ) for every
eigenvalue λ of A.
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Theorem DED Distinct Eigenvalues implies Diagonalizable 237

Suppose A is a square matrix of size n with n distinct eigenvalues. Then A is diagonalizable.
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Definition LT Linear Transformation 239

A linear transformation, T : U 7→ V , is a function that carries elements of the vector space U
(called the domain) to the vector space V (called the codomain), and which has two additional
properties

1. T (u1 + u2) = T (u1) + T (u2) for all u1, u2 ∈ U

2. T (αu) = αT (u) for all u ∈ U and all α ∈ C
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Theorem LTTZZ Linear Transformations Take Zero to Zero 240

Suppose T : U 7→ V is a linear transformation. Then T (0) = 0.
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Theorem MBLT Matrices Build Linear Transformations 241

Suppose that A is an m× n matrix. Define a function T : Cn 7→ Cm by T (x) = Ax. Then T is
a linear transformation.
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Theorem MLTCV Matrix of a Linear Transformation, Column Vectors 242

Suppose that T : Cn 7→ Cm is a linear transformation. Then there is an m × n matrix A such
that T (x) = Ax.
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Theorem LTLC Linear Transformations and Linear Combinations 243

Suppose that T : U 7→ V is a linear transformation, u1, u2, u3, . . . , ut are vectors from U and
a1, a2, a3, . . . , at are scalars from C. Then

T (a1u1 + a2u2 + a3u3 + · · ·+ atut) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ atT (ut)
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Theorem LTDB Linear Transformation Defined on a Basis 244

Suppose that T : U 7→ V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis for U
and w is a vector from U . Let a1, a2, a3, . . . , an be the scalars from C such that

w = a1u1 + a2u2 + a3u3 + · · ·+ anun

Then
T (w) = a1T (u1) + a2T (u2) + a3T (u3) + · · ·+ anT (un)
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Definition PI Pre-Image 245

Suppose that T : U 7→ V is a linear transformation. For each v, define the pre-image of v to
be the subset of U given by

T−1 (v) = {u ∈ U | T (u) = v}
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Definition LTA Linear Transformation Addition 246

Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same domain
and codomain. Then their sum is the function T + S : U 7→ V whose outputs are defined by

(T + S) (u) = T (u) + S (u)
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Theorem SLTLT Sum of Linear Transformations is a Linear Transformation 247

Suppose that T : U 7→ V and S : U 7→ V are two linear transformations with the same domain
and codomain. Then T + S : U 7→ V is a linear transformation.
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Definition LTSM Linear Transformation Scalar Multiplication 248

Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then the scalar multiple is
the function αT : U 7→ V whose outputs are defined by

(αT ) (u) = αT (u)
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Theorem MLTLT Multiple of a Linear Transformation is a Linear Transformation
249

Suppose that T : U 7→ V is a linear transformation and α ∈ C. Then (αT ) : U 7→ V is a linear
transformation.
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Theorem VSLT Vector Space of Linear Transformations 250

Suppose that U and V are vector spaces. Then the set of all linear transformations from U
to V , LT (U, V ) is a vector space when the operations are those given in Definition LTA and
Definition LTSM.
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Definition LTC Linear Transformation Composition 251

Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then the composition of
S and T is the function (S ◦ T ) : U 7→ W whose outputs are defined by

(S ◦ T ) (u) = S (T (u))
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Theorem CLTLT Composition of Linear Transformations is a Linear Transforma-
tion 252

Suppose that T : U 7→ V and S : V 7→ W are linear transformations. Then (S ◦ T ) : U 7→ W is
a linear transformation.
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Definition ILT Injective Linear Transformation 253

Suppose T : U 7→ V is a linear transformation. Then T is injective if whenever T (x) = T (y),
then x = y.
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Definition KLT Kernel of a Linear Transformation 254

Suppose T : U 7→ V is a linear transformation. Then the kernel of T is the set

K(T ) = {u ∈ U | T (u) = 0}
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Theorem KLTS Kernel of a Linear Transformation is a Subspace 255

Suppose that T : U 7→ V is a linear transformation. Then the kernel of T , K(T ), is a subspace
of U .
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Theorem KPI Kernel and Pre-Image 256

Suppose T : U 7→ V is a linear transformation and v ∈ V . If the preimage T−1 (v) is non-empty,
and u ∈ T−1 (v) then

T−1 (v) = {u + z | z ∈ K(T )} = u +K(T )
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Theorem KILT Kernel of an Injective Linear Transformation 257

Suppose that T : U 7→ V is a linear transformation. Then T is injective if and only if the kernel
of T is trivial, K(T ) = {0}.
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Theorem ILTLI Injective Linear Transformations and Linear Independence 258

Suppose that T : U 7→ V is an injective linear transformation and S = {u1, u2, u3, . . . , ut} is a
linearly independent subset of U . Then R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)} is a linearly
independent subset of V .
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Theorem ILTB Injective Linear Transformations and Bases 259

Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a basis
of U . Then T is injective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)} is a linearly
independent subset of V .

c©2005, 2006 Robert A. Beezer

Theorem ILTD Injective Linear Transformations and Dimension 260

Suppose that T : U 7→ V is an injective linear transformation. Then dim (U) ≤ dim (V ).
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Theorem CILTI Composition of Injective Linear Transformations is Injective261

Suppose that T : U 7→ V and S : V 7→ W are injective linear transformations. Then (S◦T ) : U 7→
W is an injective linear transformation.
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Definition SLT Surjective Linear Transformation 262

Suppose T : U 7→ V is a linear transformation. Then T is surjective if for every v ∈ V there
exists a u ∈ U so that T (u) = v.
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Definition RLT Range of a Linear Transformation 263

Suppose T : U 7→ V is a linear transformation. Then the range of T is the set

R(T ) = {T (u) | u ∈ U}
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Theorem RLTS Range of a Linear Transformation is a Subspace 264

Suppose that T : U 7→ V is a linear transformation. Then the range of T , R(T ), is a subspace
of V .
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Theorem RSLT Range of a Surjective Linear Transformation 265

Suppose that T : U 7→ V is a linear transformation. Then T is surjective if and only if the range
of T equals the codomain, R(T ) = V .
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Theorem SSRLT Spanning Set for Range of a Linear Transformation 266

Suppose that T : U 7→ V is a linear transformation and S = {u1, u2, u3, . . . , ut} spans U .
Then R = {T (u1) , T (u2) , T (u3) , . . . , T (ut)} spans R(T ).
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Theorem RPI Range and Pre-Image 267

Suppose that T : U 7→ V is a linear transformation. Then

v ∈ R(T ) if and only if T−1 (v) 6= ∅
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Theorem SLTB Surjective Linear Transformations and Bases 268

Suppose that T : U 7→ V is a linear transformation and B = {u1, u2, u3, . . . , um} is a basis of
U . Then T is surjective if and only if C = {T (u1) , T (u2) , T (u3) , . . . , T (um)} is a spanning
set for V .
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Theorem SLTD Surjective Linear Transformations and Dimension 269

Suppose that T : U 7→ V is a surjective linear transformation. Then dim (U) ≥ dim (V ).
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Theorem CSLTS Composition of Surjective Linear Transformations is Surjective
270

Suppose that T : U 7→ V and S : V 7→ W are surjective linear transformations. Then (S ◦
T ) : U 7→ W is a surjective linear transformation.
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Definition IDLT Identity Linear Transformation 271

The identity linear transformation on the vector space W is defined as

IW : W 7→ W, IW (w) = w
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Definition IVLT Invertible Linear Transformations 272

Suppose that T : U 7→ V is a linear transformation. If there is a function S : V 7→ U such that

S ◦ T = IU T ◦ S = IV

then T is invertible. In this case, we call S the inverse of T and write S = T−1.

c©2005, 2006 Robert A. Beezer



Theorem ILTLT Inverse of a Linear Transformation is a Linear Transformation
273

Suppose that T : U 7→ V is an invertible linear transformation. Then the function T−1 : V 7→ U
is a linear transformation.
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Theorem IILT Inverse of an Invertible Linear Transformation 274

Suppose that T : U 7→ V is an invertible linear transformation. Then T−1 is an invertible linear
transformation and

(
T−1

)−1 = T .
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Theorem ILTIS Invertible Linear Transformations are Injective and Surjective275

Suppose T : U 7→ V is a linear transformation. Then T is invertible if and only if T is injective
and surjective.
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Theorem CIVLT Composition of Invertible Linear Transformations 276

Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then the
composition, (S ◦ T ) : U 7→ W is an invertible linear transformation.
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Theorem ICLT Inverse of a Composition of Linear Transformations 277

Suppose that T : U 7→ V and S : V 7→ W are invertible linear transformations. Then S ◦ T is
invertible and (S ◦ T )−1 = T−1 ◦ S−1.
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Definition IVS Isomorphic Vector Spaces 278

Two vector spaces U and V are isomorphic if there exists an invertible linear transformation
T with domain U and codomain V , T : U 7→ V . In this case, we write U ∼= V , and the linear
transformation T is known as an isomorphism between U and V .
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Theorem IVSED Isomorphic Vector Spaces have Equal Dimension 279

Suppose U and V are isomorphic vector spaces. Then dim (U) = dim (V ).
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Definition ROLT Rank Of a Linear Transformation 280

Suppose that T : U 7→ V is a linear transformation. Then the rank of T , r (T ), is the dimension
of the range of T ,

r (T ) = dim (R(T ))
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Definition NOLT Nullity Of a Linear Transformation 281

Suppose that T : U 7→ V is a linear transformation. Then the nullity of T , n (T ), is the
dimension of the kernel of T ,

n (T ) = dim (K(T ))
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Theorem ROSLT Rank Of a Surjective Linear Transformation 282

Suppose that T : U 7→ V is a linear transformation. Then the rank of T is the dimension of V ,
r (T ) = dim (V ), if and only if T is surjective.
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Theorem NOILT Nullity Of an Injective Linear Transformation 283

Suppose that T : U 7→ V is an injective linear transformation. Then the nullity of T is zero,
n (T ) = 0, if and only if T is injective.
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Theorem RPNDD Rank Plus Nullity is Domain Dimension 284

Suppose that T : U 7→ V is a linear transformation. Then

r (T ) + n (T ) = dim (U)
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Definition VR Vector Representation 285

Suppose that V is a vector space with a basis B = {v1, v2, v3, . . . , vn}. Define a function
ρB : V 7→ Cn as follows. For w ∈ V , find scalars a1, a2, a3, . . . , an so that

w = a1v1 + a2v2 + a3v3 + · · ·+ anvn

then

[ρB (w)]i = ai 1 ≤ i ≤ n
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Theorem VRLT Vector Representation is a Linear Transformation 286

The function ρB (Definition VR) is a linear transformation.
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Theorem VRI Vector Representation is Injective 287

The function ρB (Definition VR) is an injective linear transformation.
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Theorem VRS Vector Representation is Surjective 288

The function ρB (Definition VR) is a surjective linear transformation.
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Theorem VRILT Vector Representation is an Invertible Linear Transformation
289

The function ρB (Definition VR) is an invertible linear transformation.
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Theorem CFDVS Characterization of Finite Dimensional Vector Spaces 290

Suppose that V is a vector space with dimension n. Then V is isomorphic to Cn.
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Theorem IFDVS Isomorphism of Finite Dimensional Vector Spaces 291

Suppose U and V are both finite-dimensional vector spaces. Then U and V are isomorphic if
and only if dim (U) = dim (V ).
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Theorem CLI Coordinatization and Linear Independence 292

Suppose that U is a vector space with a basis B of size n. Then S = {u1, u2, u3, . . . , uk} is a
linearly independent subset of U if and only if R = {ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}
is a linearly independent subset of Cn.
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Theorem CSS Coordinatization and Spanning Sets 293

Suppose that U is a vector space with a basis B of size n. Then u ∈ 〈{u1, u2, u3, . . . , uk}〉 if
and only if ρB (u) ∈ 〈{ρB (u1) , ρB (u2) , ρB (u3) , . . . , ρB (uk)}〉.
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Definition MR Matrix Representation 294

Suppose that T : U 7→ V is a linear transformation, B = {u1, u2, u3, . . . , un} is a basis for U
of size n, and C is a basis for V of size m. Then the matrix representation of T relative to
B and C is the m× n matrix,

MT
B,C = [ρC (T (u1))| ρC (T (u2))| ρC (T (u3))| . . . |ρC (T (un)) ]

c©2005, 2006 Robert A. Beezer



Theorem FTMR Fundamental Theorem of Matrix Representation 295

Suppose that T : U 7→ V is a linear transformation, B is a basis for U , C is a basis for V and
MT

B,C is the matrix representation of T relative to B and C. Then, for any u ∈ U ,

ρC (T (u)) = MT
B,C (ρB (u))

or equivalently
T (u) = ρ−1

C

(
MT

B,C (ρB (u))
)
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Theorem MRSLT Matrix Representation of a Sum of Linear Transformations296

Suppose that T : U 7→ V and S : U 7→ V are linear transformations, B is a basis of U and C is
a basis of V . Then

MT+S
B,C = MT

B,C + MS
B,C
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Theorem MRMLT Matrix Representation of a Multiple of a Linear Transforma-
tion 297

Suppose that T : U 7→ V is a linear transformation, α ∈ C, B is a basis of U and C is a basis
of V . Then

MαT
B,C = αMT

B,C
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Theorem MRCLT Matrix Representation of a Composition of Linear Transfor-
mations 298

Suppose that T : U 7→ V and S : V 7→ W are linear transformations, B is a basis of U , C is a
basis of V , and D is a basis of W . Then

MS◦T
B,D = MS

C,DMT
B,C
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Theorem KNSI Kernel and Null Space Isomorphism 299

Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C is a basis
for V . Then the kernel of T is isomorphic to the null space of MT

B,C ,

K(T ) ∼= N
(
MT

B,C

)
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Theorem RCSI Range and Column Space Isomorphism 300

Suppose that T : U 7→ V is a linear transformation, B is a basis for U of size n, and C is a basis
for V of size m. Then the range of T is isomorphic to the column space of MT

B,C ,

R(T ) ∼= C
(
MT

B,C

)
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Theorem IMR Invertible Matrix Representations 301

Suppose that T : U 7→ V is an invertible linear transformation, B is a basis for U and C is a
basis for V . Then the matrix representation of T relative to B and C, MT

B,C is an invertible
matrix, and

MT−1

C,B =
(
MT

B,C

)−1
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Theorem IMILT Invertible Matrices, Invertible Linear Transformation 302

Suppose that A is a square matrix of size n and T : Cn 7→ Cn is the linear transformation
defined by T (x) = Ax. Then A is invertible matrix if and only if T is an invertible linear
transformation.
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Theorem NME9 Nonsingular Matrix Equivalences, Round 9 303
Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Cn, C(A) = Cn.

8. The columns of A are a basis for Cn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

11. The determinant of A is nonzero, det (A) 6= 0.

12. λ = 0 is not an eigenvalue of A.

13. The linear transformation T : Cn 7→ Cn defined by T (x) = Ax is invertible.
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Definition EELT Eigenvalue and Eigenvector of a Linear Transformation 304

Suppose that T : V 7→ V is a linear transformation. Then a nonzero vector v ∈ V is an
eigenvector of T for the eigenvalue λ if T (v) = λv.
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Definition CBM Change-of-Basis Matrix 305

Suppose that V is a vector space, and IV : V 7→ V is the identity linear transformation on V .
Let B = {v1, v2, v3, . . . , vn} and C be two bases of V . Then the change-of-basis matrix
from B to C is the matrix representation of IV relative to B and C,

CB,C = M IV

B,C

= [ρC (IV (v1))| ρC (IV (v2))| ρC (IV (v3))| . . . |ρC (IV (vn)) ]
= [ρC (v1)| ρC (v2)| ρC (v3)| . . . |ρC (vn) ]
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Theorem CB Change-of-Basis 306

Suppose that v is a vector in the vector space V and B and C are bases of V . Then

ρC (v) = CB,CρB (v)

c©2005, 2006 Robert A. Beezer



Theorem ICBM Inverse of Change-of-Basis Matrix 307

Suppose that V is a vector space, and B and C are bases of V . Then the change-of-basis matrix
CB,C is nonsingular and

C−1
B,C = CC,B
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Theorem MRCB Matrix Representation and Change of Basis 308

Suppose that T : U 7→ V is a linear transformation, B and C are bases for U , and D and E are
bases for V . Then

MT
B,D = CE,DMT

C,ECB,C
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Theorem SCB Similarity and Change of Basis 309

Suppose that T : V 7→ V is a linear transformation and B and C are bases of V . Then

MT
B,B = C−1

B,CMT
C,CCB,C
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Theorem EER Eigenvalues, Eigenvectors, Representations 310

Suppose that T : V 7→ V is a linear transformation and B is a basis of V . Then v ∈ V is an
eigenvector of T for the eigenvalue λ if and only if ρB (v) is an eigenvector of MT

B,B for the
eigenvalue λ.
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Definition NLT Nilpotent Linear Transformation 311

Suppose that T : V 7→ V is a linear transformation such that there is an integer p > 0 such that
T p (v) = 0 for every v ∈ V . The smallest p for which this condition is met is called the index
of T .
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Definition JB Jordan Block 312

Given the scalar λ ∈ C, the Jordan block Jn (λ) is the n× n matrix defined by

[Jn (λ)]ij =


λ i = j

1 j = i + 1
0 otherwise
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Theorem ENLT Eigenvalues of Nilpotent Linear Transformations 313

Suppose that T : V 7→ V is a linear transformation and λ is an eigenvalue of T . Then λ = 0.
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Theorem DNLT Diagonalizable Nilpotent Linear Transformations 314

Suppose the linear transformation T : V 7→ V is nilpotent. Then T is diagonalizable if and only
T is the zero linear transformation.
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Theorem KPLT Kernels of Powers of Linear Transformations 315

Suppose T : V 7→ V is a linear transformation, where dim (V ) = n. Then there is an integer m,
0 ≤ m ≤ n, such that

{0} = K
(
T 0

)
( K

(
T 1

)
( K

(
T 2

)
( · · · ( K(Tm) = K

(
Tm+1

)
= K

(
Tm+2

)
= · · ·
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Theorem KPNLT Kernels of Powers of Nilpotent Linear Transformations 316

Suppose T : V 7→ V is a nilpotent linear transformation with index p and dim (V ) = n. Then
0 ≤ p ≤ n and

{0} = K
(
T 0

)
( K

(
T 1

)
( K

(
T 2

)
( · · · ( K(T p) = K

(
T p+1

)
= · · · = V
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Definition CNE Complex Number Equality 317

The complex numbers α = a+bi and β = c+di are equal, denoted α = β, if a = c and b = d.
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Definition CNA Complex Number Addition 318

The sum of the complex numbers α = a+bi and β = c+di , denoted α+β, is (a+c)+(b+d)i.
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Definition CNM Complex Number Multiplication 319

The product of the complex numbers α = a + bi and β = c + di , denoted αβ, is (ac − bd) +
(ad + bc)i.
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Theorem PCNA Properties of Complex Number Arithmetic 320
The operations of addition and multiplication of complex numbers have the following properties.

• ACCN Additive Commutativity, Complex Numbers For any α, β ∈ C, α + β =
β + α.

• MCCN Multiplicative Commutativity, Complex Numbers For any α, β ∈ C,
αβ = βα.

• AACN Additive Associativity, Complex Numbers For any α, β, γ ∈ C, α +
(β + γ) = (α + β) + γ.

• MACN Multiplicative Associativity, Complex Numbers For any α, β, γ ∈ C,
α (βγ) = (αβ) γ.

• DCN Distributivity, Complex Numbers For any α, β, γ ∈ C, α(β +γ) = αβ +αγ.

• ZCN Zero, Complex Numbers There is a complex number 0 = 0 + 0i so that for
any α ∈ C, 0 + α = α.

• OCN One, Complex Numbers There is a complex number 1 = 1 + 0i so that for
any α ∈ C, 1α = α.

• AICN Additive Inverse, Complex Numbers For every α ∈ C there exists −α ∈ C
so that α + (−α) = 0.

• MICN Multiplicative Inverse, Complex Numbers For every α ∈ C, α 6= 0 there
exists 1

α ∈ C so that 1
αα = 1.
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Definition CCN Conjugate of a Complex Number 321

The conjugate of the complex number c = a + bi ∈ C is the complex number c = a− bi.
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Theorem CCRA Complex Conjugation Respects Addition 322

Suppose that c and d are complex numbers. Then c + d = c + d.
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Theorem CCRM Complex Conjugation Respects Multiplication 323

Suppose that c and d are complex numbers. Then cd = cd.
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Theorem CCT Complex Conjugation Twice 324

Suppose that c is a complex number. Then c = c.
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Definition MCN Modulus of a Complex Number 325

The modulus of the complex number c = a + bi ∈ C, is the nonnegative real number

|c| =
√

cc =
√

a2 + b2.

c©2005, 2006 Robert A. Beezer

Definition SET Set 326

A set is an unordered collection of objects. If S is a set and x is an object that is in the set S,
we write x ∈ S. If x is not in S, then we write x 6∈ S. We refer to the objects in a set as its
elements.
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Definition SSET Subset 327

If S and T are two sets, then S is a subset of T , written S ⊆ T if whenever x ∈ S then x ∈ T .
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Definition ES Empty Set 328

The empty set is the set with no elements. Its is denoted by ∅.
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Definition SE Set Equality 329

Two sets, S and T , are equal, if S ⊆ T and T ⊆ S. In this case, we write S = T .
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Definition C Cardinality 330

Suppose S is a finite set. Then the number of elements in S is called the cardinality or size
of S, and is denoted |S|.
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Definition SU Set Union 331

Suppose S and T are sets. Then the union of S and T , denoted S∪T , is the set whose elements
are those that are elements of S or of T , or both. More formally,

x ∈ S ∪ T if and only if x ∈ S or x ∈ T
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Definition SI Set Intersection 332

Suppose S and T are sets. Then the intersection of S and T , denoted S ∩ T , is the set whose
elements are only those that are elements of S and of T . More formally,

x ∈ S ∩ T if and only if x ∈ S and x ∈ T
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Definition SC Set Complement 333

Suppose S is a set that is a subset of a universal set U . Then the complement of S, denoted
S, is the set whose elements are those that are elements of U and not elements of S. More
formally,

x ∈ S if and only if x ∈ U and x 6∈ S
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