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Preface

This text is designed to teach the concepts and techniques of basic linear algebra
as a rigorous mathematical subject. Besides computational proficiency, there is an
emphasis on understanding definitions and theorems, as well as reading, understand-
ing and creating proofs. A strictly logical organization, complete and exceedingly
detailed proofs of every theorem, advice on techniques for reading and writing proofs,
and a selection of challenging theoretical exercises will slowly provide the novice
with the tools and confidence to be able to study other mathematical topics in a
rigorous fashion.

Most students taking a course in linear algebra will have completed courses in
differential and integral calculus, and maybe also multivariate calculus, and will
typically be second-year students in university. This level of mathematical maturity is
expected, however there is little or no requirement to know calculus itself to use this
book successfully. With complete details for every proof, for nearly every example,
and for solutions to a majority of the exercises, the book is ideal for self-study, for
those of any age.

While there is an abundance of guidance in the use of the software system, Sage,
there is no attempt to address the problems of numerical linear algebra, which are
arguably continuous in nature. Similarly, there is little emphasis on a geometric
approach to problems of linear algebra. While this may contradict the experience of
many experienced mathematicians, the approach here is consciously algebraic. As a
result, the student should be well-prepared to encounter groups, rings and fields in
future courses in algebra, or other areas of discrete mathematics.

How to Use This Book

While the book is divided into chapters, the main organizational unit is the thirty-
seven sections. Each contains a selection of definitions, theorems, and examples
interspersed with commentary. If you are enrolled in a course, read the section before
class and then answer the section’s reading questions as preparation for class.

The version available for viewing in a web browser is the most complete, integrat-
ing all of the components of the book. Consider acquainting yourself with this version.
Knowls are indicated by a dashed underlines and will allow you to seamlessly remind
yourself of the content of definitions, theorems, examples, exercises, subsections and
more. Use them liberally.

Historically, mathematics texts have numbered definitions and theorems. We
have instead adopted a strategy more appropriate to the heavy cross-referencing,
linking and knowling afforded by modern media. Mimicking an approach taken by
Donald Knuth, we have given items short titles and associated acronyms. You will
become comfortable with this scheme after a short time, and might even come to
appreciate its inherent advantages. In the web version, each chapter has a list of ten
or so important items from that chapter, and you will find yourself recognizing some
of these acronyms with no extra effort beyond the normal amount of study.

Exercises come in three flavors, indicated by the first letter of their label. “C”
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indicates a problem that is essentially computational. “T” represents a problem
that is more theoretical, usually requiring a solution that is as rigorous as a proof.
“M” stands for problems that are “medium”, “moderate”, “midway”, “mediate” or
“median”, but never “mediocre.” Their statements could feel computational, but their
solutions require a more thorough understanding of the concepts or theory, while
perhaps not being as rigorous as a proof. Of course, such a tripartite division will
be subject to interpretation. Otherwise, larger numerical values indicate greater
perceived difficulty, with gaps allowing for the contribution of new problems from
readers. Many, but not all, exercises have complete solutions. These are indicated
by daggers in the PDF and print versions, with solutions available in an online
supplement, while in the web version a solution is indicated by a knowl right after the
problem statement. Resist the urge to peek early. Working the exercises diligently is
the best way to master the material.

The Archetypes are a collection of twenty-four archetypical examples. The open
source lexical database, WordNet, defines an archetype as “something that serves as
a model or a basis for making copies.” We employ the word in the first sense here.
By carefully choosing the examples we hope to provide at least one example that
is interesting and appropriate for many of the theorems and definitions, and also
provide counterexamples to conjectures (and especially counterexamples to converses
of theorems). Each archetype has numerous computational results which you could
strive to duplicate as you encounter new definitions and theorems. There are some
exercises which will help guide you in this quest.

Supplements

Print versions of the book (either a physical copy or a PDF version) have significant
material available as supplements. Solutions are contained in the Exercise Manual.
Advice on the use of the open source mathematical software system, Sage, is contained
in another supplement. (Look for a linear algebra “Quick Reference” sheet at the
Sage website.) The Archetypes are available in a PDF form which could be used
as a workbook. Flashcards, with the statement of every definition and theorem, in
order of appearance, are also available.

Freedom

This book is copyrighted by its author. Some would say it is his “intellectual property,”
a distasteful phrase if there ever was one. Rather than exercise all the restrictions
provided by the government-granted monopoly that is copyright, the author has
granted you a license, the GNU Free Documentation License (GFDL). In summary
it says you may receive an electronic copy at no cost via electronic networks and you
may make copies forever. So your copy of the book never has to go “out-of-print.”
You may redistribute copies and you may make changes to your copy for your own
use. However, you have one major responsibility in accepting this license. If you
make changes and distribute the changed version, then you must offer the same
license for the new version, you must acknowledge the original author’s work, and
you must indicate where you have made changes.

In practice, if you see a change that needs to be made (like correcting an error,
or adding a particularly nice theoretical exercise), you may just wish to donate the
change to the author rather than create and maintain a new version. Such donations
are highly encouraged and gratefully accepted. You may notice the large number of
small mistakes that have been corrected by readers that have come before you. Pay
it forward.

So, in one word, the book really is “free” (as in “no cost”). But the open license
employed is vastly different than “free to download, all rights reserved.” Most
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importantly, you know that this book, and its ideas, are not the property of anyone.
Or they are the property of everyone. Either way, this book has its own inherent
“freedom,” separate from those who contribute to it. Much of this philosophy is
embodied in the following quote:

If nature has made any one thing less susceptible than all others of
exclusive property, it is the action of the thinking power called an idea,
which an individual may exclusively possess as long as he keeps it to
himself; but the moment it is divulged, it forces itself into the possession
of every one, and the receiver cannot dispossess himself of it. Its peculiar
character, too, is that no one possesses the less, because every other
possesses the whole of it. He who receives an idea from me, receives
instruction himself without lessening mine; as he who lights his taper
at mine, receives light without darkening me. That ideas should freely
spread from one to another over the globe, for the moral and mutual
instruction of man, and improvement of his condition, seems to have
been peculiarly and benevolently designed by nature, when she made
them, like fire, expansible over all space, without lessening their density
in any point, and like the air in which we breathe, move, and have our
physical being, incapable of confinement or exclusive appropriation.

Thomas Jefferson
Letter to Isaac McPherson
August 13, 1813

To the Instructor

The first half of this text (through Chapter M) is a course in matrix algebra, though
the foundation of some more advanced ideas is also being formed in these early
sections (such as Theorem NMUS, which presages invertible linear transformations).
Vectors are presented exclusively as column vectors (not transposes of row vectors),
and linear combinations are presented very early. Spans, null spaces, column spaces
and row spaces are also presented early, simply as sets, saving most of their vector
space properties for later, so they are familiar objects before being scrutinized
carefully.

You cannot do everything early, so in particular matrix multiplication comes later
than usual. However, with a definition built on linear combinations of column vectors,
it should seem more natural than the more frequent definition using dot products
of rows with columns. And this delay emphasizes that linear algebra is built upon
vector addition and scalar multiplication. Of course, matrix inverses must wait for
matrix multiplication, but this does not prevent nonsingular matrices from occurring
sooner. Vector space properties are hinted at when vector and matrix operations
are first defined, but the notion of a vector space is saved for a more axiomatic
treatment later (Chapter VS). Once bases and dimension have been explored in
the context of vector spaces, linear transformations and their matrix representation
follow. The predominant purpose of the book is the four sections of Chapter R, which
introduces the student to representations of vectors and matrices, change-of-basis,
and orthonormal diagonalization (the spectral theorem). This final chapter pulls
together all the important ideas of the previous chapters.

Our vector spaces use the complex numbers as the field of scalars. This avoids
the fiction of complex eigenvalues being used to form scalar multiples of eigenvectors.
The presence of the complex numbers in the earliest sections should not frighten
students who need a review, since they will not be used heavily until much later,
and Section CNO provides a quick review.



Linear algebra is an ideal subject for the novice mathematics student to learn how
to develop a subject precisely, with all the rigor mathematics requires. Unfortunately,
much of this rigor seems to have escaped the standard calculus curriculum, so
for many university students this is their first exposure to careful definitions and
theorems, and the expectation that they fully understand them, to say nothing of the
expectation that they become proficient in formulating their own proofs. We have
tried to make this text as helpful as possible with this transition. Every definition
is stated carefully, set apart from the text. Likewise, every theorem is carefully
stated, and almost every one has a complete proof. Theorems usually have just one
conclusion, so they can be referenced precisely later. Definitions and theorems are
cataloged in order of their appearance (Definitions and Theorems in the Reference
chapter at the end of the book). Along the way, there are discussions of some more
important ideas relating to formulating proofs (Proof Techniques), which is partly
advice and partly a primer on logic.

Collecting responses to the Reading Questions prior to covering material in class
will require students to learn how to read the material. Sections are designed to be
covered in a fifty-minute lecture. Later sections are longer, but as students become
more proficient at reading the text, it is possible to survey these longer sections at
the same pace. With solutions to many of the exercises, students may be given the
freedom to work homework at their own pace and style (individually, in groups, with
an instructor’s help, etc.). To compensate and keep students from falling behind, I
give an examination on each chapter.

Sage is a powerful open source program for advanced mathematics. It is especially
robust for linear algebra. We have included an abundance of material which will help
the student (and instructor) learn how to use Sage for the study of linear algebra
and how to understand linear algebra better with Sage. This material is tightly
integrated with the web version of the book and will become even easier to use
since the technology for interfaces to Sage continues to rapidly evolve. Sage is highly
capable for mathematical research as well, and so should be a tool that students can
use in subsequent courses and careers.

Conclusion

Linear algebra is a beautiful subject. I have enjoyed preparing this exposition and
making it widely available. Much of my motivation for writing this book is captured
by the sentiments expressed by H.M. Cundy and A.P. Rollet in their Preface to the
First Edition of Mathematical Models (1952), especially the final sentence,

This book was born in the classroom, and arose from the spontaneous
interest of a Mathematical Sixth in the construction of simple models. A
desire to show that even in mathematics one could have fun led to an
exhibition of the results and attracted considerable attention throughout
the school. Since then the Sherborne collection has grown, ideas have come
from many sources, and widespread interest has been shown. It seems
therefore desirable to give permanent form to the lessons of experience so
that others can benefit by them and be encouraged to undertake similar
work.

Foremost, I hope that students find their time spent with this book profitable. I
hope that instructors find it flexible enough to fit the needs of their course. You can
always find the latest version, and keep current with any changes, at the book’s website
(http://linear.pugetsound.edu). I appreciate receiving suggestions, corrections,
and other comments, so please do contact me.

Robert A. Beezer
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Tacoma, Washington
December 2012
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Chapter SLE
Systems of Linear Equations

We will motivate our study of linear algebra by studying solutions to systems of
linear equations. While the focus of this chapter is on the practical matter of how
to find, and describe, these solutions, we will also be setting ourselves up for more
theoretical ideas that will appear later.

Section WILA
What is Linear Algebra?

We begin our study of linear algebra with an introduction and a motivational example.

Subsection LA
Linear 4+ Algebra

The subject of linear algebra can be partially explained by the meaning of the two
terms comprising the title. “Linear” is a term you will appreciate better at the
end of this course, and indeed, attaining this appreciation could be taken as one
of the primary goals of this course. However for now, you can understand it to
mean anything that is “straight” or “flat.” For example in the zy-plane you might
be accustomed to describing straight lines (is there any other kind?) as the set of
solutions to an equation of the form y = mx + b, where the slope m and the y-
intercept b are constants that together describe the line. In multivariate calculus, you
may have discussed planes. Living in three dimensions, with coordinates described
by triples (z, y, z), they can be described as the set of solutions to equations of the
form ax 4+ by + ¢z = d, where a, b, ¢, d are constants that together determine the
plane. While we might describe planes as “flat,” lines in three dimensions might be
described as “straight.” From a multivariate calculus course you will recall that lines
are sets of points described by equations such as © =3t — 4, y = =Tt + 2, z = 9¢,
where t is a parameter that can take on any value.

Another view of this notion of “flatness” is to recognize that the sets of points
just described are solutions to equations of a relatively simple form. These equations
involve addition and multiplication only. We will have a need for subtraction, and
occasionally we will divide, but mostly you can describe “linear” equations as
involving only addition and multiplication. Here are some examples of typical
equations we will see in the next few sections:

20 +3y —42=13 4dx1+dxo—ax3+x4+25=0 9a—2b+T7c+2d= -7
What we will not see are equations like:
xy + dbyz = 13 xy + a8 /xy — w342t =0 tan(ab) + log(c — d) = -7

The exception will be that we will on occasion need to take a square root.
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You have probably heard the word “algebra” frequently in your mathematical
preparation for this course. Most likely, you have spent a good ten to fifteen years
learning the algebra of the real numbers, along with some introduction to the very
similar algebra of complex numbers (see Section CNO). However, there are many
new algebras to learn and use, and likely linear algebra will be your second algebra.
Like learning a second language, the necessary adjustments can be challenging at
times, but the rewards are many. And it will make learning your third and fourth
algebras even easier. Perhaps you have heard of “groups” and “rings” (or maybe
you have studied them already), which are excellent examples of other algebras with
very interesting properties and applications. In any event, prepare yourself to learn
a new algebra and realize that some of the old rules you used for the real numbers
may no longer apply to this new algebra you will be learning!

The brief discussion above about lines and planes suggests that linear algebra
has an inherently geometric nature, and this is true. Examples in two and three
dimensions can be used to provide valuable insight into important concepts of this
course. However, much of the power of linear algebra will be the ability to work with
“flat” or “straight” objects in higher dimensions, without concerning ourselves with
visualizing the situation. While much of our intuition will come from examples in
two and three dimensions, we will maintain an algebraic approach to the subject,
with the geometry being secondary. Others may wish to switch this emphasis around,
and that can lead to a very fruitful and beneficial course, but here and now we are
laying our bias bare.

Subsection AA
An Application

We conclude this section with a rather involved example that will highlight some of
the power and techniques of linear algebra. Work through all of the details with pencil
and paper, until you believe all the assertions made. However, in this introductory
example, do not concern yourself with how some of the results are obtained or how
you might be expected to solve a similar problem. We will come back to this example
later and expose some of the techniques used and properties exploited. For now,
use your background in mathematics to convince yourself that everything said here
really is correct.

Example TMP Trail Mix Packaging

Suppose you are the production manager at a food-packaging plant and one of your
product lines is trail mix, a healthy snack popular with hikers and backpackers,
containing raisins, peanuts and hard-shelled chocolate pieces. By adjusting the mix
of these three ingredients, you are able to sell three varieties of this item. The fancy
version is sold in half-kilogram packages at outdoor supply stores and has more
chocolate and fewer raisins, thus commanding a higher price. The standard version
is sold in one kilogram packages in grocery stores and gas station mini-markets.
Since the standard version has roughly equal amounts of each ingredient, it is not as
expensive as the fancy version. Finally, a bulk version is sold in bins at grocery stores
for consumers to load into plastic bags in amounts of their choosing. To appeal to
the shoppers that like bulk items for their economy and healthfulness, this mix has
many more raisins (at the expense of chocolate) and therefore sells for less.

Your production facilities have limited storage space and early each morning
you are able to receive and store 380 kilograms of raisins, 500 kilograms of peanuts
and 620 kilograms of chocolate pieces. As production manager, one of your most
important duties is to decide how much of each version of trail mix to make every
day. Clearly, you can have up to 1500 kilograms of raw ingredients available each
day, so to be the most productive you will likely produce 1500 kilograms of trail
mix each day. Also, you would prefer not to have any ingredients leftover each day,
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so that your final product is as fresh as possible and so that you can receive the
maximum delivery the next morning. But how should these ingredients be allocated
to the mixing of the bulk, standard and fancy versions? First, we need a little more
information about the mixes. Workers mix the ingredients in 15 kilogram batches,
and each row of the table below gives a recipe for a 15 kilogram batch. There is some
additional information on the costs of the ingredients and the price the manufacturer
can charge for the different versions of the trail mix.

Raisins Peanuts Chocolate Cost | Sale Price
(kg/batch) | (kg/batch) | (kg/batch) | ($/kg) ($/kg)
Bulk 7 6 2 3.69 4.99
Standard 6 4 5 3.86 5.50
Fancy 2 5 8 4.45 6.50
Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

As production manager, it is important to realize that you only have three
decisions to make — the amount of bulk mix to make, the amount of standard mix to
make and the amount of fancy mix to make. Everything else is beyond your control
or is handled by another department within the company. Principally, you are also
limited by the amount of raw ingredients you can store each day. Let us denote the
amount of each mix to produce each day, measured in kilograms, by the variable
quantities b, s and f. Your production schedule can be described as values of b, s
and f that do several things. First, we cannot make negative quantities of each mix,
SO

b>0 s> 0 f>0

Second, if we want to consume all of our ingredients each day, the storage capacities
lead to three (linear) equations, one for each ingredient,

7 6 2 -

1f5b + 5° + Ef =380 (raisins)

6 4 )

—15b tps T Ef =500 (peanuts)
2 5 8

st + S + Bf = 620 (chocolate)

It happens that this system of three equations has just one solution. In other
words, as production manager, your job is easy, since there is but one way to use up
all of your raw ingredients making trail mix. This single solution is

b =300 kg s = 300 kg £ =900 kg.

We do not yet have the tools to explain why this solution is the only one, but it
should be simple for you to verify that this is indeed a solution. (Go ahead, we will
wait.) Determining solutions such as this, and establishing that they are unique, will
be the main motivation for our initial study of linear algebra.

So we have solved the problem of making sure that we make the best use of
our limited storage space, and each day use up all of the raw ingredients that are
shipped to us. Additionally, as production manager, you must report weekly to the
CEO of the company, and you know he will be more interested in the profit derived
from your decisions than in the actual production levels. So you compute,

300(4.99 — 3.69) + 300(5.50 — 3.86) + 900(6.50 — 4.45) = 2727.00

for a daily profit of $2,727 from this production schedule. The computation of the
daily profit is also beyond our control, though it is definitely of interest, and it too
looks like a “linear” computation.

As often happens, things do not stay the same for long, and now the marketing
department has suggested that your company’s trail mix products standardize on
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every mix being one-third peanuts. Adjusting the peanut portion of each recipe by
also adjusting the chocolate portion leads to revised recipes, and slightly different
costs for the bulk and standard mixes, as given in the following table.

Raisins Peanuts Chocolate Cost | Sale Price
(kg/batch) | (kg/batch) | (kg/batch) | ($/kg) ($/kg)
Bulk 7 5 3 3.70 4.99
Standard 6 5 4 3.85 5.50
Fancy 2 ) 8 4.45 6.50
Storage (kg) 380 500 620
Cost ($/kg) 2.55 4.65 4.80

In a similar fashion as before, we desire values of b, s and f so that

b>0 5>0 =0
and

lb + E + f =380 (raisins)

15 15

3b + 3 + f =500 (peanuts)

15" " 15° P

3 4

— — =62 hocol

15b+153+ f 620 (chocolate)

It now happens that this system of equations has infinitely many solutions, as we
will now demonstrate. Let f remain a variable quantity. Then if we make f kilograms
of the fancy mix, we will make 4f — 3300 kilograms of the bulk mix and —5f + 4800
kilograms of the standard mix. Let us now verify that, for any choice of f, the values
of b=4f — 3300 and s = —5f + 4800 will yield a production schedule that exhausts
all of the day’s supply of raw ingredients (right now, do not be concerned about how
you might derive expressions like these for b and s). Grab your pencil and paper and
play along.

5700

7 6

ﬁ(4f_3300)+1 (—5f +4800) + f—0f+1—5_380
5 5 7500

Z(4f — 4 = — =
15( f 3300)+15( 5+ 800)+ f 0f + 15 500
3 4 9300
1—5(4f—3300)+1 (—5f +4800) + f—0f+—5_620

Convince yourself that these expressions for b and s allow us to vary f and obtain
an infinite number of possibilities for solutions to the three equations that describe
our storage capacities. As a practical matter, there really are not an infinite number
of solutions, since we are unlikely to want to end the day with a fractional number
of bags of fancy mix, so our allowable values of f should probably be integers. More
importantly, we need to remember that we cannot make negative amounts of each
mix! Where does this lead us? Positive quantities of the bulk mix requires that

b>0 = 4f-3300>0 = f>2825
Similarly for the standard mix,
—5f+4800>0 = f<960

So, as production manager, you really have to choose a value of f from the finite
set

s>0 =

{825, 826, ..., 960}

leaving you with 136 choices, each of which will exhaust the day’s supply of raw
ingredients. Pause now and think about which you would choose.

Recalling your weekly meeting with the CEO suggests that you might want to
choose a production schedule that yields the biggest possible profit for the company.
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So you compute an expression for the profit based on your as yet undetermined
decision for the value of f,

(4f — 3300)(4.99 — 3.70) + (=5 + 4800)(5.50 — 3.85) + (f)(6.50 — 4.45)
— —1.04f + 3663

Since f has a negative coefficient it would appear that mixing fancy mix is
detrimental to your profit and should be avoided. So you will make the decision
to set daily fancy mix production at f = 825. This has the effect of setting b =
4(825) — 3300 = 0 and we stop producing bulk mix entirely. So the remainder of your
daily production is standard mix at the level of s = —5(825) 44800 = 675 kilograms
and the resulting daily profit is (—1.04)(825) + 3663 = 2805. It is a pleasant surprise
that daily profit has risen to $2,805, but this is not the most important part of the
story. What is important here is that there are a large number of ways to produce
trail mix that use all of the day’s worth of raw ingredients and you were able to
easily choose the one that netted the largest profit. Notice too how all of the above
computations look “linear.”

In the food industry, things do not stay the same for long, and now the sales
department says that increased competition has led to the decision to stay competitive
and charge just $5.25 for a kilogram of the standard mix, rather than the previous
$5.50 per kilogram. This decision has no effect on the possibilities for the production
schedule, but will affect the decision based on profit considerations. So you revisit
just the profit computation, suitably adjusted for the new selling price of standard

mix,

(4f — 3300)(4.99 — 3.70) + (=5 + 4800)(5.25 — 3.85) + (f)(6.50 — 4.45)
= 0.21f + 2463

Now it would appear that fancy mix is beneficial to the company’s profit since
the value of f has a positive coefficient. So you take the decision to make as much
fancy mix as possible, setting f = 960. This leads to s = —5(960) 4+ 4800 = 0 and the
increased competition has driven you out of the standard mix market all together. The
remainder of production is therefore bulk mix at a daily level of b = 4(960) — 3300 =
540 kilograms and the resulting daily profit is 0.21(960) + 2463 = 2664.60. A daily
profit of $2,664.60 is less than it used to be, but as production manager, you have
made the best of a difficult situation and shown the sales department that the best
course is to pull out of the highly competitive standard mix market completely. A

This example is taken from a field of mathematics variously known by names such
as operations research, systems science, or management science. More specifically,
this is a perfect example of problems that are solved by the techniques of “linear
programming.”

There is a lot going on under the hood in this example. The heart of the matter is
the solution to systems of linear equations, which is the topic of the next few sections,
and a recurrent theme throughout this course. We will return to this example on
several occasions to reveal some of the reasons for its behavior.

Reading Questions

1. Is the equation z? 4 zy + tan(y®) = 0 linear or not? Why or why not?
2. Find all solutions to the system of two linear equations 2x + 3y = —8, x — y = 6.

3. Describe how the production manager might explain the importance of the procedures
described in the trail mix application (Subsection WILA.AA).
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Exercises

C10 In Example TMP the first table lists the cost (per kilogram) to manufacture each of
the three varieties of trail mix (bulk, standard, fancy). For example, it costs $3.69 to make
one kilogram of the bulk variety. Re-compute each of these three costs and notice that the
computations are linear in character.

M70" In Example TMP two different prices were considered for marketing standard mix
with the revised recipes (one-third peanuts in each recipe). Selling standard mix at $5.50
resulted in selling the minimum amount of the fancy mix and no bulk mix. At $5.25 it
was best for profits to sell the maximum amount of fancy mix and then sell no standard
mix. Determine a selling price for standard mix that allows for maximum profits while still
selling some of each type of mix.



Section SSLE
Solving Systems of Linear Equations

We will motivate our study of linear algebra by considering the problem of solving
several linear equations simultaneously. The word “solve” tends to get abused
somewhat, as in “solve this problem.” When talking about equations we understand
a more precise meaning: find all of the values of some variable quantities that make
an equation, or several equations, true.

Subsection SLE
Systems of Linear Equations

Example STNE Solving two (nonlinear) equations
Suppose we desire the simultaneous solutions of the two equations,

1,2 4 y2 -1
—z+V3y=0
You can easily check by substitution that = = ‘2[, y=s and T = f§, y= ,l

are both solutions. We need to also convince ourselves that these are the only
solutions. To see this, plot each equation on the zy-plane, which means to plot (z, y)
pairs that make an individual equation true. In this case we get a circle centered at
the origin with radius 1 and a straight line through the origin with slope % The
intersections of these two curves are our desired simultaneous solutions, and so we
believe from our plot that the two solutions we know already are indeed the only
ones. We like to write solutions as sets, so in this case we write the set of solutions as

s-{(£.0).(-4.-1)

In order to discuss systems of linear equations carefully, we need a precise
definition. And before we do that, we will introduce our periodic discussions about
“Proof Techniques.” Linear algebra is an excellent setting for learning how to read,
understand and formulate proofs. But this is a difficult step in your development as
a mathematician, so we have included a series of short essays containing advice and
explanations to help you along. These will be referenced in the text as needed, and
are also collected as a list you can consult when you want to return to re-read them.
(Which is strongly encouraged!)

With a definition next, now is the time for the first of our proof techniques. So
study Proof Technique D. We’ll be right here when you get back. See you in a bit.

A

Definition SLE System of Linear Equations
A system of linear equations is a collection of m equations in the variable
quantities =1, =3, =3,...,T, of the form,

a1171 + @122 + 1323 + -+ + a1 Tn = by

a2171 + A20T2 + A23T3 + -+ + A2, Ty = b

a31%1 + azaT2 + az3T3 + - + azpTy = b3

Am1T1 + AmaT2 + Q323 + -+ + QmnTn = by,

where the values of a;5, b; and z;, 1 <7 <m, 1 < j < n, are from the set of complex
numbers, C. O



§SSLE BEEZER: A FIRST COURSE IN LINEAR ALGEBRA 8

Don’t let the mention of the complex numbers, C, rattle you. We will stick with
real numbers exclusively for many more sections, and it will sometimes seem like
we only work with integers! However, we want to leave the possibility of complex
numbers open, and there will be occasions in subsequent sections where they are
necessary. You can review the basic properties of complex numbers in Section CNO,
but these facts will not be critical until we reach Section O.

Now we make the notion of a solution to a linear system precise.

Definition SSLE Solution of a System of Linear Equations

A solution of a system of linear equations in n variables, x1, z2, x3, ..., 2, (such
as the system given in Definition SLE), is an ordered list of n complex numbers,
S1, 82, 83, ..., S, such that if we substitute s for z1, so for xo, s3 for x3, ..., s,
for x,,, then for every equation of the system the left side will equal the right side,
i.e. each equation is true simultaneously. O

More typically, we will write a solution in a form like 1 = 12, x5 = =7, 3 = 2 to
mean that s; = 12, s5 = —7, s3 = 2 in the notation of Definition SSLE. To discuss
all of the possible solutions to a system of linear equations, we now define the set
of all solutions. (So Section SET is now applicable, and you may want to go and
familiarize yourself with what is there.)

Definition SSSLE Solution Set of a System of Linear Equations
The solution set of a linear system of equations is the set which contains every
solution to the system, and nothing more. |

Be aware that a solution set can be infinite, or there can be no solutions, in
which case we write the solution set as the empty set, ) = {} (Definition ES). Here
is an example to illustrate using the notation introduced in Definition SLE and the
notion of a solution (Definition SSLE).

Example NSE Notation for a system of equations
Given the system of linear equations,

T1+ 29 +x4 =7
T1+ a2+ 23 —24=3
33’]1+Z’2+5I‘3771‘4:1

we have n = 4 variables and m = 3 equations. Also,

aj; =1 ajp =2 a;3=0 ayy =1 by =
CL21:1 a22:1 a23:1 a24:—1 b2:3
a31:3 a32:1 a33:5 a34:—7 b3:1
Additionally, convince yourself that 1 = —2, x5 = 4, 3 = 2, 4 = 1 is one
solution (Definition SSLE), but it is not the only one! For example, another solution
isxy = —12, x5 = 11, z3 = 1, x4 = —3, and there are more to be found. So the
solution set contains at least two elements. A

We will often shorten the term “system of linear equations” to “system of
equations” leaving the linear aspect implied. After all, this is a book about linear
algebra.

Subsection PSS
Possibilities for Solution Sets

The next example illustrates the possibilities for the solution set of a system of linear
equations. We will not be too formal here, and the necessary theorems to back up
our claims will come in subsequent sections. So read for feeling and come back later
to revisit this example.
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Example TTS Three typical systems
Consider the system of two equations with two variables,

201 4+ 322 =3
.”[,'1—1'2:4

If we plot the solutions to each of these equations separately on the x;xo-plane,
we get two lines, one with negative slope, the other with positive slope. They have
exactly one point in common, (x1, z2) = (3, —1), which is the solution z; = 3,
x9 = —1. From the geometry, we believe that this is the only solution to the system
of equations, and so we say it is unique.

Now adjust the system with a different second equation,

201 + 310 =3
4xr1 + 6292 =6

A plot of the solutions to these equations individually results in two lines, one on
top of the other! There are infinitely many pairs of points that make both equations
true. We will learn shortly how to describe this infinite solution set precisely (see
Example SAA, Theorem VFSLS). Notice now how the second equation is just a
multiple of the first.

One more minor adjustment provides a third system of linear equations,

2x1 + 31’2 =3
4xq + 69 = 10

A plot now reveals two lines with identical slopes, i.e. parallel lines. They have
no points in common, and so the system has a solution set that is empty, S = 0.A

This example exhibits all of the typical behaviors of a system of equations. A
subsequent theorem will tell us that every system of linear equations has a solution
set that is empty, contains a single solution or contains infinitely many solutions
(Theorem PSSLS). Example STNE yielded exactly two solutions, but this does not
contradict the forthcoming theorem. The equations in Example STNE are not linear
because they do not match the form of Definition SLE, and so we cannot apply
Theorem PSSLS in this case.

Subsection ESEO
Equivalent Systems and Equation Operations

With all this talk about finding solution sets for systems of linear equations, you
might be ready to begin learning how to find these solution sets yourself. We begin
with our first definition that takes a common word and gives it a very precise meaning
in the context of systems of linear equations.

Definition ESYS Equivalent Systems
Two systems of linear equations are equivalent if their solution sets are equal. [

Notice here that the two systems of equations could look very different (i.e. not
be equal), but still have equal solution sets, and we would then call the systems
equivalent. Two linear equations in two variables might be plotted as two lines
that intersect in a single point. A different system, with three equations in two
variables might have a plot that is three lines, all intersecting at a common point,
with this common point identical to the intersection point for the first system. By our
definition, we could then say these two very different looking systems of equations
are equivalent, since they have identical solution sets. It is really like a weaker form
of equality, where we allow the systems to be different in some respects, but we use
the term equivalent to highlight the situation when their solution sets are equal.
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With this definition, we can begin to describe our strategy for solving linear
systems. Given a system of linear equations that looks difficult to solve, we would
like to have an equivalent system that is easy to solve. Since the systems will have
equal solution sets, we can solve the “easy” system and get the solution set to the
“difficult” system. Here come the tools for making this strategy viable.

Definition EO Equation Operations
Given a system of linear equations, the following three operations will transform the
system into a different one, and each operation is known as an equation operation.

1. Swap the locations of two equations in the list of equations.
2. Multiply each term of an equation by a nonzero quantity.

3. Multiply each term of one equation by some quantity, and add these terms to
a second equation, on both sides of the equality. Leave the first equation the
same after this operation, but replace the second equation by the new one.

O

These descriptions might seem a bit vague, but the proof or the examples that
follow should make it clear what is meant by each. We will shortly prove a key
theorem about equation operations and solutions to linear systems of equations.

We are about to give a rather involved proof, so a discussion about just what a
theorem really is would be timely. Stop and read Proof Technique T first.

In the theorem we are about to prove, the conclusion is that two systems are
equivalent. By Definition ESYS this translates to requiring that solution sets be
equal for the two systems. So we are being asked to show that two sets are equal.
How do we do this? Well, there is a very standard technique, and we will use it
repeatedly through the course. If you have not done so already, head to Section SET
and familiarize yourself with sets, their operations, and especially the notion of set
equality, Definition SE and the nearby discussion about its use.

Theorem EOPSS Equation Operations Preserve Solution Sets

If we apply one of the three equation operations of Definition EO to a system of
linear equations (Definition SLE), then the original system and the transformed
system are equivalent.

Proof. We take each equation operation in turn and show that the solution sets of
the two systems are equal, using the definition of set equality (Definition SE).

)

1. Tt will not be our habit in proofs to resort to saying statements are “obvious,’
but in this case, it should be. There is nothing about the order in which we
write linear equations that affects their solutions, so the solution set will be
equal if the systems only differ by a rearrangement of the order of the equations.

2. Suppose a # 0 is a number. Let’s choose to multiply the terms of equation ¢
by a to build the new system of equations,

a1171 + a12T2 + 01323 + - - + A1 Ty = by
a21%1 + A22%2 + a373 + - -+ + A2p Ty = by

a3171 + azaT2 + azzr3 + - + a3, Ty = b3

Q121 + Qaioxs + aaizxrs + - -+ aainxr, = ab;

Am1T1 + Gm2T2 + Am3T3 + - - + Gmn®n = by,
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Let S denote the solutions to the system in the statement of the theorem, and
let T' denote the solutions to the transformed system.

(a) Show S C T'. Suppose (x1, 2, X3, ...,Tn) = (b1, B2, B3, ..., 0n) €S is
a solution to the original system. Ignoring the i-th equation for a moment,
we know it makes all the other equations of the transformed system true.
We also know that

a1 + a2 + aizfs + -+ ainfn = b;
which we can multiply by a to get

aa; B1 4+ aaipBr + aaizfBs + - - -+ aain By = ab;

This says that the i-th equation of the transformed system is also true, so
we have established that (81, 82, B3, ...,0n) € T, and therefore S C T.

(b) Now show T C S. Suppose (z1, 2, T3, ...,&n) = (1, B2, B3, .-+, Pn) €
T is a solution to the transformed system. Ignoring the i-th equation
for a moment, we know it makes all the other equations of the original
system true. We also know that

aa; B1 + aaipBr + aazfBs + - -+ aain By = ab;
which we can multiply by i, since a # 0, to get

a1 81 + aipBo + ai3Bz + - 4 ainfn = by

This says that the i-th equation of the original system is also true, so
we have established that (81, B2, B3, ..., 8n) € S, and therefore T C S.
Locate the key point where we required that o # 0, and consider what
would happen if o = 0.

3. Suppose « is a number. Let’s choose to multiply the terms of equation ¢ by «
and add them to equation j in order to build the new system of equations,
ani + a1 + -+ a1pZn = by
a2171 + @222 + - + A2,Tn = bo

az1r1 + azgaT2 + - + azpTy, = b3
(aaﬂ + ajl)xl =+ (Oéaiz + ajg)al‘g —+ -4 (aam =+ ajn)xn = ab; + bj

Am1T1 + Q222 + -+ -+ ApTn = bm

Let S denote the solutions to the system in the statement of the theorem, and
let T denote the solutions to the transformed system.

(a) Show S C T'. Suppose (x1, T2, X3, ...,Tn) = (b1, B2, B3, ..., 0n) € S is
a solution to the original system. Ignoring the j-th equation for a moment,
we know this solution makes all the other equations of the transformed
system true. Using the fact that the solution makes the i-th and j-th
equations of the original system true, we find
(aan +aj1)B1 + (aaiz + aj2)Ba + -+ + (aain + ajn)Bn

= (@ai1f1 + aaigfa + - + ainfBn) + (aj1B1 + aj2Ba + - + ajnfBn)
= a(ainfi + ai2Pa + -+ + ainBn) + (aj181 + aj2f2 + - + ajnfBn)
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= O[bi + bj.
This says that the j-th equation of the transformed system is also true, so
we have established that (81, 82, B3, -..,8,) € T, and therefore S C T.

(b) Now show T' C S. Suppose (z1, T2, T3, ..., &n) = (51, B2, B3y ---,0n) €
T is a solution to the transformed system. Ignoring the j-th equation
for a moment, we know it makes all the other equations of the original
system true. We then find

aj1f+ -+ ajnbn
=a;181 + -+ ajnfn +ab; — ab;

a1fr+ -+ ajnfn + (aa;1 B + - - + aainfn) — ab;

=a;181 + aanfr+ -+ ainBn + aaip B, — ab;

= (aaj1 +aj1)p1 + - - + (aGipn + ajn)Bn — ab;

= ab; + bj — ab;

This says that the j-th equation of the original system is also true, so we
have established that (81, 82, 83, ...,0,) € S, and therefore T C S.

Why didn’t we need to require that o % 0 for this row operation? In other
words, how does the third statement of the theorem read when o = 07 Does
our proof require some extra care when o = 0?7 Compare your answers with
the similar situation for the second row operation. (See Exercise SSLE.T20.)

Theorem EOPSS is the necessary tool to complete our strategy for solving systems
of equations. We will use equation operations to move from one system to another,
all the while keeping the solution set the same. With the right sequence of operations,
we will arrive at a simpler equation to solve. The next two examples illustrate this
idea, while saving some of the details for later.

Example US Three equations, one solution
We solve the following system by a sequence of equation operations.

T+ 229 + 223 = 4
x1+3x2+3x3 =5
2581 + 6562 + 5933 =6
a = —1 times equation 1, add to equation 2:
T+ 2T + 223 = 4
0.’E1 + 1£C2 + 1$3 =1
2581 + 6352 + 51’3 =6
a = —2 times equation 1, add to equation 3:
T+ 2x9 + 223 =4
0x1 4+ lag + 123 =1
0.’51 + 2952 + 1£L’3 =-2

« = —2 times equation 2, add to equation 3:

T+ 2T + 223 = 4
0x1 4+ lag + 123 =1
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0901 + 0%2 - 11’3 =—4
a = —1 times equation 3:

T + 2w + 223 =4
0z1 4+ 1lag + 123 =1
Ox1 +0x2 + 123 =14

which can be written more clearly as

I1+2$2+2$3 :4

To+x3=1
This is now a very easy system of equations to solve. The third equation requires
that z3 = 4 to be true. Making this substitution into equation 2 we arrive at o = —3,
and finally, substituting these values of x5 and x3 into the first equation, we find
that 1 = 2. Note too that this is the only solution to this final system of equations,
since we were forced to choose these values to make the equations true. Since we
performed equation operations on each system to obtain the next one in the list, all
of the systems listed here are all equivalent to each other by Theorem EOPSS. Thus
(z1, 2, x3) = (2, —3,4) is the unique solution to the original system of equations
(and all of the other intermediate systems of equations listed as we transformed one
into another). A

Example IS Three equations, infinitely many solutions

The following system of equations made an appearance earlier in this section (Ex-
ample NSE), where we listed one of its solutions. Now, we will try to find all of the
solutions to this system. Do not concern yourself too much about why we choose
this particular sequence of equation operations, just believe that the work we do is
all correct.

$1+21’2+01’3+l’4:7
T1+Tot+T3—T4=3
314+ a9 +br3—Tery =1

a = —1 times equation 1, add to equation 2:

x1+2x2+0x3+x4:7
Ox1 —x9 + 23 — 224 = —4
3x1+ 2o +br3—Tery =1

a = —3 times equation 1, add to equation 3:

x1+2x2+0$3+x4 =7
Ox1 —x9 + 23 — 224 = —4
0zq — 529 + dxrg — 1024 = —20

a = —5 times equation 2, add to equation 3:

$1+2LL’2+0[L'3+1'4:7
01‘171’2+l‘3721‘4:74
0z1 + 029 + 0z3 + 02y =0

a = —1 times equation 2:

1+ 220 +0x3+24 =7
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Ox1 +2x9 —x3+2x4 =4
0I1+0$2+01’3+01’4:0

a = —2 times equation 2, add to equation 1:

x1 4+ 0z + 223 — 34 = —1
Ox1 +29 — 23+ 224 =4
0x1+0x2+0x3+0x4:0

which can be written more clearly as

x1 +2x3 — 314 = —1
To — T3+ 2x4 =4
0=0

What does the equation 0 = 0 mean? We can choose any values for =i, xs,
x3, x4 and this equation will be true, so we only need to consider further the first
two equations, since the third is true no matter what. We can analyze the second
equation without consideration of the variable x;. It would appear that there is
considerable latitude in how we can choose x2, x3, x4 and make this equation true.
Let’s choose x3 and x4 to be anything we please, say x3 = a and x4 = b.

Now we can take these arbitrary values for 3 and x4, substitute them in equation
1, to obtain

1 +2a—3b=—1
z1=—-1—2a+3b

Similarly, equation 2 becomes

To—a+2b=4
To=4+4+a—2b
So our arbitrary choices of values for 3 and x4 (a and b) translate into specific
values of ;1 and 9. The lone solution given in Example NSE was obtained by

choosing a = 2 and b = 1. Now we can easily and quickly find many more (infinitely
more). Suppose we choose a = 5 and b = —2, then we compute

21 = —1—2(5) +3(—=2) = —17
wy=4+5—2(-2) =13
and you can verify that (z1, 2, z3, x4) = (=17, 13, 5, —2) makes all three equations
true. The entire solution set is written as
S={(-1-2a+3b,4+a—2b,a,b)lacC,beC}

It would be instructive to finish off your study of this example by taking the
general form of the solutions given in this set and substituting them into each of the
three equations and verify that they are true in each case (Exercise SSLE.M40). A

In the next section we will describe how to use equation operations to systemati-
cally solve any system of linear equations. But first, read one of our more important
pieces of advice about speaking and writing mathematics. See Proof Technique L.

Before attacking the exercises in this section, it will be helpful to read some
advice on getting started on the construction of a proof. See Proof Technique GS.

Reading Questions

1. How many solutions does the system of equations 3z + 2y = 4, 6z +4y = 8 have? Explain
your answer.
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2. How many solutions does the system of equations 3z + 2y = 4, 6z + 4y = —2 have?
Explain your answer.

3. What do we mean when we say mathematics is a language?

Exercises

C10 Find a solution to the system in Example IS where x3 = 6 and z4 = 2. Find two
other solutions to the system. Find a solution where 1 = —17 and z2 = 14. How many
possible answers are there to each of these questions?

C20 Each archetype (Archetypes) that is a system of equations begins by listing some
specific solutions. Verify the specific solutions listed in the following archetypes by evaluat-
ing the system of equations with the solutions listed.

Archetype A, Archetype B, Archetype C, Archetype D, Archetype E, Archetype F, Archetype
G, Archetype H, Archetype I, Archetype J

C30"  Find all solutions to the linear system:
r+y=>5
2r —y=3

C31 Find all solutions to the linear system:

3r+2y=1
rT—y=2
4o+ 2y =2

C32 Find all solutions to the linear system:

z+2y=38
r—y=2
z+y=4

C33 Find all solutions to the linear system:
rH+y—z=-1
r—y—z=-1

z=2

C34 Find all solutions to the linear system:
TH+y—z=-5
rT—y—z=-3
r+y—2z=0

C50" A three-digit number has two properties. The tens-digit and the ones-digit add up
to 5. If the number is written with the digits in the reverse order, and then subtracted
from the original number, the result is 792. Use a system of equations to find all of the
three-digit numbers with these properties.

C51"7  Find all of the six-digit numbers in which the first digit is one less than the second,
the third digit is half the second, the fourth digit is three times the third and the last two
digits form a number that equals the sum of the fourth and fifth. The sum of all the digits
is 24. (From The MENSA Puzzle Calendar for January 9, 2006.)

C52"7  Driving along, Terry notices that the last four digits on his car’s odometer are
palindromic. A mile later, the last five digits are palindromic. After driving another mile, the
middle four digits are palindromic. One more mile, and all six are palindromic. What was
the odometer reading when Terry first looked at it? Form a linear system of equations that
expresses the requirements of this puzzle. (Car Talk Puzzler, National Public Radio, Week
of January 21, 2008) (A car odometer displays six digits and a sequence is a palindrome
if it reads the same left-to-right as right-to-left.)
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M10" Each sentence below has at least two meanings. Identify the source of the double
meaning, and rewrite the sentence (at least twice) to clearly convey each meaning.

1. They are baking potatoes.

2. He bought many ripe pears and apricots.
3. She likes his sculpture.

4. I decided on the bus.

M11" Discuss the difference in meaning of each of the following three almost identical
sentences, which all have the same grammatical structure. (These are due to Keith Devlin.)

1. She saw him in the park with a dog.
2. She saw him in the park with a fountain.

3. She saw him in the park with a telescope.

M12"  The following sentence, due to Noam Chomsky, has a correct grammatical structure,
but is meaningless. Critique its faults. “Colorless green ideas sleep furiously.” (Chomsky,
Noam. Syntactic Structures, The Hague/Paris: Mouton, 1957. p. 15.)
M13" Read the following sentence and form a mental picture of the situation.

The baby cried and the mother picked it up.

What assumptions did you make about the situation?

M14 Discuss the difference in meaning of the following two almost identical sentences,
which have nearly identical grammatical structure. (This antanaclasis is often attributed to
the comedian Groucho Marx, but has earlier roots.)

1. Time flies like an arrow.

2. Fruit flies like a banana.

M30" This problem appears in a middle-school mathematics textbook: Together Dan
and Diane have $20. Together Diane and Donna have $15. How much do the three of them
have in total? (Transition Mathematics, Second Edition, Scott Foresman Addison Wesley,
1998. Problem 5-1.19.)

M40 Solutions to the system in Example IS are given as
(z1, x2, 3, 4) = (=1 — 2a + 3b, 4 + a — 2b, a, b)

Evaluate the three equations of the original system with these expressions in a and b and
verify that each equation is true, no matter what values are chosen for a and b.

M70" We have seen in this section that systems of linear equations have limited possi-
bilities for solution sets, and we will shortly prove Theorem PSSLS that describes these
possibilities exactly. This exercise will show that if we relax the requirement that our equa-
tions be linear, then the possibilities expand greatly. Consider a system of two equations in
the two variables x and y, where the departure from linearity involves simply squaring the
variables.

z? — y2 =1

x> + y2 =4
After solving this system of non-linear equations, replace the second equation in turn by
22 +20+9y2 =3, 22+ =1, 22 — 4z +y? = =3, —2? + y? = 1 and solve each resulting
system of two equations in two variables. (This exercise includes suggestions from Don
Kreher.)
T10" Proof Technique D asks you to formulate a definition of what it means for a whole
number to be odd. What is your definition? (Do not say “the opposite of even.”) Is 6 odd?
Is 11 odd? Justify your answers by using your definition.
T20" Explain why the second equation operation in Definition EO requires that the
scalar be nonzero, while in the third equation operation this restriction on the scalar is not
present.



Section RREF
Reduced Row-Echelon Form

After solving a few systems of equations, you will recognize that it doesn’t matter so
much what we call our variables, as opposed to what numbers act as their coefficients.
A system in the variables z1, x2, 3 would behave the same if we changed the names
of the variables to a, b, ¢ and kept all the constants the same and in the same places.
In this section, we will isolate the key bits of information about a system of equations
into something called a matrix, and then use this matrix to systematically solve
the equations. Along the way we will obtain one of our most important and useful
computational tools.

Subsection MVNSE
Matrix and Vector Notation for Systems of Equations

Definition M Matrix

An m X n matrix is a rectangular layout of numbers from C having m rows and
n columns. We will use upper-case Latin letters from the start of the alphabet
(A, B, C,...) to denote matrices and squared-off brackets to delimit the layout.
Many use large parentheses instead of brackets — the distinction is not important.
Rows of a matrix will be referenced starting at the top and working down (i.e. row 1
is at the top) and columns will be referenced starting from the left (i.e. column 1 is
at the left). For a matrix A, the notation [A],; will refer to the complex number in

row ¢ and column j of A. O

Be careful with this notation for individual entries, since it is easy to think that
(4], ; refers to the whole matrix. It does not. It is just a number, but is a convenient
way to talk about the individual entries simultaneously. This notation will get a
heavy workout once we get to Chapter M.

Example AM A matrix

-1 2 5 3
B=|{1 0 -6 1 ]
-4 2 2 =2
is a matrix with m = 3 rows and n = 4 columns. We can say that [B]Z3 = —6 while
[3]3,4 =2 A

When we do equation operations on system of equations, the names of the
variables really aren’t very important. x1, zs, x3, or a, b, ¢, or x, y, z, it really doesn’t
matter. In this subsection we will describe some notation that will make it easier to
describe linear systems, solve the systems and describe the solution sets. Here is a
list of definitions, laden with notation.

Definition CV Column Vector

A column vector of size m is an ordered list of m numbers, which is written in
order vertically, starting at the top and proceeding to the bottom. At times, we will
refer to a column vector as simply a vector. Column vectors will be written in bold,
usually with lower case Latin letter from the end of the alphabet such as u, v, w,
X, ¥, z. Some books like to write vectors with arrows, such as 4. Writing by hand,
some like to put arrows on top of the symbol, or a tilde underneath the symbol, as
in u. To refer to the entry or component of vector v in location i of the list, we

write [v],. O

Be careful with this notation. While the symbols [v], might look somewhat
substantial, as an object this represents just one entry of a vector, which is just a
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single complex number.

Definition ZCV Zero Column Vector

The zero vector of size m is the column vector of size m where each entry is the
number zero,

o OO

0
or defined much more compactly, [0], = 0 for 1 <i < m. |
Definition CM Coefficient Matrix
For a system of linear equations,
a1171 + @122 + @133 + - + a1 Tp = by
a211 + A20T2 + A23T3 + -+ + A2 Ty = b2

a31%1 + azaT2 + az3w3 + -+ azpTy = b3

U121 + Am2T2 + Q323 + - + QmnTn = by

the coefficient matrix is the m x n matrix

a11 a2 aiz ... Qin
a21 a2 azsz ... A2n
A= |31 a2 a3z ... a3p
Am1 Am2 Am3 e Amn
O
Definition VOC Vector of Constants
For a system of linear equations,
a1121 + a12%2 + a13T3 + - - + A1 Ty = by
(2121 + A22T2 + A23T3 + - -+ + A2p Ty = b
as1T1 + azaTo + azzrs + -+ - + asp Ty = b3
Am1T1 + GmaT2 + Am3T3 + - + ATy = by
the vector of constants is the column vector of size m
by
ba
b= b3
bm
O

Definition SOLV Solution Vector

For a system of linear equations,
a1171 + 12T + 1373 + - - + a1 Tp = by
a21%1 + A22T2 + A3T3 + -+ + A2pTy = by

a3121 + azaT2 + a33T3 + - - + azpTy = b3
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Am1T1 + Amaxa + Am3T3 + -+ ampTy, = bm
the solution vector is the column vector of size n
T
T2
x3

Tp
O

The solution vector may do double-duty on occasion. It might refer to a list of
variable quantities at one point, and subsequently refer to values of those variables
that actually form a particular solution to that system.

Definition MRLS Matrix Representation of a Linear System

If A is the coefficient matrix of a system of linear equations and b is the vector of
constants, then we will write LS(A, b) as a shorthand expression for the system of
linear equations, which we will refer to as the matrix representation of the linear
system. ([l

Example NSLE Notation for systems of linear equations
The system of linear equations

201 +4x9 — 33+ b4 + 25 =9
31’1+£L’2+ 1‘4731’5:0
—2x1 4+ Txo — dx3 + 204 + 225 = —3

has coefficient matrix

and vector of constants

and so will be referenced as LS(A, b). A

Definition AM Augmented Matrix

Suppose we have a system of m equations in n variables, with coefficient matrix A
and vector of constants b. Then the augmented matrix of the system of equations
is the m x (n+ 1) matrix whose first n columns are the columns of A and whose last
column (n + 1) is the column vector b. This matrix will be written as [A| b]. O

The augmented matrix represents all the important information in the system of
equations, since the names of the variables have been ignored, and the only connection
with the variables is the location of their coefficients in the matrix. It is important
to realize that the augmented matrix is just that, a matrix, and not a system of
equations. In particular, the augmented matrix does not have any “solutions,” though
it will be useful for finding solutions to the system of equations that it is associated
with. (Think about your objects, and review Proof Technique L.) However, notice
that an augmented matrix always belongs to some system of equations, and vice
versa, so it is tempting to try and blur the distinction between the two. Here’s a
quick example.

Example AMAA Augmented matrix for Archetype A
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Archetype A is the following system of 3 equations in 3 variables.
T —To+2x3=1
2361 + T2+ 23 = 8

1+ X9 = 5
Here is its augmented matrix.
1 -1 2 1
2 1 1 8
1 1 0 5

Subsection RO
Row Operations

An augmented matrix for a system of equations will save us the tedium of continually
writing down the names of the variables as we solve the system. It will also release
us from any dependence on the actual names of the variables. We have seen how
certain operations we can perform on equations (Definition EO) will preserve their
solutions (Theorem EOPSS). The next two definitions and the following theorem
carry over these ideas to augmented matrices.

Definition RO Row Operations
The following three operations will transform an m X n matrix into a different matrix
of the same size, and each is known as a row operation.

1. Swap the locations of two rows.
2. Multiply each entry of a single row by a nonzero quantity.

3. Multiply each entry of one row by some quantity, and add these values to the
entries in the same columns of a second row. Leave the first row the same after
this operation, but replace the second row by the new values.

We will use a symbolic shorthand to describe these row operations:
1. R; <+ R;: Swap the location of rows ¢ and j.

2. aR;: Multiply row i by the nonzero scalar a.

3. aR; + R;: Multiply row 4 by the scalar o and add to row j.

O

Definition REM Row-Equivalent Matrices
Two matrices, A and B, are row-equivalent if one can be obtained from the other
by a sequence of row operations. O

Example TREM Two row-equivalent matrices
The matrices

2 -1 3 4 1 1 0 6
A=15 2 =2 3] B=|3 0 -2 —91
1 1 0 6 2 -1 3 4

are row-equivalent as can be seen from

9 -1 3 4 1 1 0 6 1 1 0 6
l5 2 -2 3] M%l5 2 -3 3] M[?, 0 -2 —9]
1 1 0 6 2 -1 3 4 2 -1 3 4

We can also say that any pair of these three matrices are row-equivalent. VAN
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Notice that each of the three row operations is reversible (Exercise RREF.T10),
so we do not have to be careful about the distinction between “A is row-equivalent
to B” and “B is row-equivalent to A.” (Exercise RREF.T11)

The preceding definitions are designed to make the following theorem possible.
It says that row-equivalent matrices represent systems of linear equations that have
identical solution sets.

Theorem REMES Row-Equivalent Matrices represent Equivalent Systems
Suppose that A and B are row-equivalent augmented matrices. Then the systems of
linear equations that they represent are equivalent systems.

Proof. If we perform a single row operation on an augmented matrix, it will have
the same effect as if we did the analogous equation operation on the corresponding
system of equations. By exactly the same methods as we used in the proof of Theorem
EOPSS we can see that each of these row operations will preserve the set of solutions
for the corresponding system of equations. |

So at this point, our strategy is to begin with a system of equations, represent it
by an augmented matrix, perform row operations (which will preserve solutions for
the corresponding systems) to get a “simpler” augmented matrix, convert back to a
“simpler” system of equations and then solve that system, knowing that its solutions
are those of the original system. Here’s a rehash of Example US as an exercise in
using our new tools.

Example USR Three equations, one solution, reprised
We solve the following system using augmented matrices and row operations. This
is the same system of equations solved in Example US using equation operations.

Ty + 2x9 +2x3 =4
1+ 3x9+3x3 =5
2$1+6$2+5$3:6

Form the augmented matrix,

1 2 2 4
A=11 3 3 5]
2 6 5 6
and apply row operations,
T 2 2 SRR 1 2 2 4
Zlht, 1*?[0 11 11—>‘ 1 [0 11 1]
2 6 5 6 02 1 -2
SRR 1 2 2 4 R 1 2 2 4
—>‘2+3[0111]—>‘3[0111]
0 0 -1 —4 0 0 1 4
So the matrix
1 2 2 4
B=10 1 1 1
0 0 1 4

is row equivalent to A and by Theorem REMES the system of equations below has
the same solution set as the original system of equations.

$1+21’2+2$3:4
£172+173:1
1‘3:4

Solving this “simpler” system is straightforward and is identical to the process
in Example US. A
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Subsection RREF
Reduced Row-Echelon Form

The preceding example amply illustrates the definitions and theorems we have seen
so far. But it still leaves two questions unanswered. Exactly what is this “simpler”
form for a matrix, and just how do we get it? Here’s the answer to the first question,
a definition of reduced row-echelon form.

Definition RREF Reduced Row-Echelon Form
A matrix is in reduced row-echelon form if it meets all of the following conditions:

1. If there is a row where every entry is zero, then this row lies below any other
row that contains a nonzero entry.

2. The leftmost nonzero entry of a row is equal to 1.
3. The leftmost nonzero entry of a row is the only nonzero entry in its column.

4. Consider any two different leftmost nonzero entries, one located in row i,
column j and the other located in row s, column ¢. If s > 4, then t > j.

A row of only zero entries will be called a zero row and the leftmost nonzero
entry of a nonzero row will be called a leading 1. The number of nonzero rows will
be denoted by 7.

A column containing a leading 1 will be called a pivot column. The set of column
indices for all of the pivot columns will be denoted by D = {d;, da, d3, ..., d;-}
where d; < dy < d3 < --- < d,, while the columns that are not pivot columns will

be denoted as F = {f1, fa, f3, ..., fa—r} Where f1 < fo < f3 < -+ < fr_r.
U

The principal feature of reduced row-echelon form is the pattern of leading 1’s
guaranteed by conditions (2) and (4), reminiscent of a flight of geese, or steps in a
staircase, or water cascading down a mountain stream.

There are a number of new terms and notation introduced in this definition,
which should make you suspect that this is an important definition. Given all there
is to digest here, we will mostly save the use of D and F' until Section TSS. However,
one important point to make here is that all of these terms and notation apply to a
matrix. Sometimes we will employ these terms and sets for an augmented matrix,
and other times it might be a coefficient matrix. So always give some thought to
exactly which type of matrix you are analyzing.

Example RREF A matrix in reduced row-echelon form
The matrix C is in reduced row-echelon form.

1 -3 06 00 -5 9

0O o 0010 3 -7

cC=0 0 0001 7 3

0O 0 0 0 0O O 0

0 0 0 0 0 0 O 0
This matrix has two zero rows and three leading 1’s. So r = 3. Columns 1, 5, and 6
are pivot columns, so D = {1, 5, 6} and then F = {2, 3, 4, 7, 8}. A

Example NRREF A matrix not in reduced row-echelon form
The matrix E is not in reduced row-echelon form, as it fails each of the four
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requirements once.

10 -3 06 07 =5 9
o0 0 5010 3 -7
o 00 0 0O0O0O0O O O
~|/01 0 0000 —4 2
o0 0 0O0O0OT1 7 3
00 0 0O0O0O0O O O

Our next theorem has a “constructive” proof. Learn about the meaning of this
term in Proof Technique C.

Theorem REMEF Row-Equivalent Matrix in Echelon Form
Suppose A is a matriz. Then there is a matriz B so that

1. A and B are row-equivalent.

2. B is in reduced row-echelon form.

Proof. Suppose that A has m rows and n columns. We will describe a process for
converting A into B via row operations. This procedure is known as Gauss-Jordan
elimination. Tracing through this procedure will be easier if you recognize that ¢
refers to a row that is being converted, j refers to a column that is being converted,
and r keeps track of the number of nonzero rows. Here we go.

1. Set j =0 and r = 0.
2. Increase j by 1. If j now equals n + 1, then stop.

3. Examine the entries of A in column j located in rows 7 4+ 1 through m. If all
of these entries are zero, then go to Step 2.

4. Choose a row from rows r 4+ 1 through m with a nonzero entry in column j.
Let ¢ denote the index for this row.

5. Increase r by 1.
6. Use the first row operation to swap rows ¢ and r.

7. Use the second row operation to convert the entry in row r and column j to a
1.

8. Use the third row operation with row r to convert every other entry of column
7 to zero.

9. Go to Step 2.

The result of this procedure is that the matrix A is converted to a matrix in
reduced row-echelon form, which we will refer to as B. We need to now prove this
claim by showing that the converted matrix has the requisite properties of Definition
RREF. First, the matrix is only converted through row operations (Steps 6, 7, 8), so
A and B are row-equivalent (Definition REM).

It is a bit more work to be certain that B is in reduced row-echelon form. We
claim that as we begin Step 2, the first j columns of the matrix are in reduced
row-echelon form with r nonzero rows. Certainly this is true at the start when j = 0,
since the matrix has no columns and so vacuously meets the conditions of Definition
RREF with » = 0 nonzero rows.

In Step 2 we increase j by 1 and begin to work with the next column. There
are two possible outcomes for Step 3. Suppose that every entry of column j in rows
7+ 1 through m is zero. Then with no changes we recognize that the first j columns
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of the matrix has its first r rows still in reduced-row echelon form, with the final
m — r rows still all zero.

Suppose instead that the entry in row ¢ of column j is nonzero. Notice that since
r+ 1 <i<m, we know the first j — 1 entries of this row are all zero. Now, in Step
5 we increase r by 1, and then embark on building a new nonzero row. In Step 6 we
swap row r and row 7. In the first j columns, the first » — 1 rows remain in reduced
row-echelon form after the swap. In Step 7 we multiply row r by a nonzero scalar,
creating a 1 in the entry in column j of row 4, and not changing any other rows.
This new leading 1 is the first nonzero entry in its row, and is located to the right of
all the leading 1’s in the preceding r — 1 rows. With Step 8 we insure that every
entry in the column with this new leading 1 is now zero, as required for reduced
row-echelon form. Also, rows r+ 1 through m are now all zeros in the first j columns,
so we now only have one new nonzero row, consistent with our increase of r by one.
Furthermore, since the first j — 1 entries of row r are zero, the employment of the
third row operation does not destroy any of the necessary features of rows 1 through
r — 1 and rows r + 1 through m, in columns 1 through j — 1.

So at this stage, the first j columns of the matrix are in reduced row-echelon
form. When Step 2 finally increases j to n + 1, then the procedure is completed and
the full n columns of the matrix are in reduced row-echelon form, with the value of
r correctly recording the number of nonzero rows. |

The procedure given in the proof of Theorem REMEF can be more precisely
described using a pseudo-code version of a computer program. Single-letter variables,
likem, n, i, j, r have the same meanings as above. := is assignment of the value
on the right to the variable on the left, A[i,j] is the equivalent of the matrix entry
(4], ;» while == is an equality test and <> is a “not equals” test.
input m, n and A
r :=0
for j := 1 ton

i=1r+1

while i <= m and A[i,j] == 0

i = 1i+1
if 1 < mt+l
r = r+l
swap rows i and r of A (row op 1)
scale A[r,j] to a leading 1 (row op 2)
for k ;=1 tom, k <>r
make A[k,j] zero (row op 3, employing row r)
output r and A

Notice that as a practical matter the “and” used in the conditional statement of
the while statement should be of the “short-circuit” variety so that the array access
that follows is not out-of-bounds.

So now we can put it all together. Begin with a system of linear equations
(Definition SLE), and represent the system by its augmented matrix (Definition AM).
Use row operations (Definition RO) to convert this matrix into reduced row-echelon
form (Definition RREF), using the procedure outlined in the proof of Theorem
REMEF. Theorem REMEF also tells us we can always accomplish this, and that the
result is row-equivalent (Definition REM) to the original augmented matrix. Since
the matrix in reduced-row echelon form has the same solution set, we can analyze
the row-reduced version instead of the original matrix, viewing it as the augmented
matrix of a different system of equations. The beauty of augmented matrices in
reduced row-echelon form is that the solution sets to their corresponding systems
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can be easily determined, as we will see in the next few examples and in the next
section.

We will see through the course that almost every interesting property of a matrix
can be discerned by looking at a row-equivalent matrix in reduced row-echelon form.
For this reason it is important to know that the matrix B guaranteed to exist by
Theorem REMEF is also unique.

Two proof techniques are applicable to the proof. First, head out and read two
proof techniques: Proof Technique CD and Proof Technique U.

Theorem RREFU Reduced Row-Echelon Form is Unique
Suppose that A is an m X n matriz and that B and C are m X n matrices that are
row-equivalent to A and in reduced row-echelon form. Then B = C.

Proof. We need to begin with no assumptions about any relationships between B
and C, other than they are both in reduced row-echelon form, and they are both
row-equivalent to A.

If B and C are both row-equivalent to A, then they are row-equivalent to each
other. Repeated row operations on a matrix combine the rows with each other using
operations that are linear, and are identical in each column. A key observation for
this proof is that each individual row of B is linearly related to the rows of C. This
relationship is different for each row of B, but once we fix a row, the relationship is
the same across columns. More precisely, there are scalars d;5, 1 < ¢,k < m such
that forany 1 <i<m, 1 <j5<n,

[B]ij = Zéik [C]kj
k=1

You should read this as saying that an entry of row ¢ of B (in column j) is a
linear function of the entries of all the rows of C' that are also in column j, and the
scalars (0;;) depend on which row of B we are considering (the ¢ subscript on d;;),
but are the same for every column (no dependence on j in §;). This idea may be
complicated now, but will feel more familiar once we discuss “linear combinations”
(Definition LCCV) and moreso when we discuss “row spaces” (Definition RSM).
For now, spend some time carefully working Exercise RREF.M40, which is designed
to illustrate the origins of this expression. This completes our exploitation of the
row-equivalence of B and C.

We now repeatedly exploit the fact that B and C' are in reduced row-echelon
form. Recall that a pivot column is all zeros, except a single one. More carefully, if
R is a matrix in reduced row-echelon form, and dy is the index of a pivot column,
then [R) kd, = 1 precisely when k = £ and is otherwise zero. Notice also that any
entry of R that is both below the entry in row ¢ and to the left of column dy is also
zero (with below and left understood to include equality). In other words, look at
examples of matrices in reduced row-echelon form and choose a leading 1 (with a
box around it). The rest of the column is also zeros, and the lower left “quadrant”
of the matrix that begins here is totally zeros.

Assuming no relationship about the form of B and C, let B have r nonzero rows
and denote the pivot columns as D = {dy, da, ds, ..., d,}. For C let ' denote the
number of nonzero rows and denote the pivot columns as

D' ={d,ds, ds3,...,d} (Definition RREF). There are four steps in the
proof, and the first three are about showing that B and C have the same number
of pivot columns, in the same places. In other words, the “primed” symbols are a
necessary fiction.

First Step. Suppose that d; < d}. Then

1=[B] Definition RREF
1d1
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= Z 01k [C]kdl
k=1

= Z 51k(0) dy < dll

=0

The entries of C are all zero since they are left and below of the leading 1 in row 1
and column d) of C. This is a contradiction, so we know that d; > d}. By an entirely
similar argument, reversing the roles of B and C, we could conclude that d; < d.
Together this means that d; = dj.
Second Step. Suppose that we have determined that dy = d, da = df, d3 = dj,
..dp = d;,. Let’s now show that dj,1 = d},, ;. Working towards a contradiction,
suppose that dj 11 < d), ;. For 1 </ <p,

0= [B] Definition RREF

pt1.de

m

:E p+1,k [Clya,
m
§ p+1k kd;Z

k=1
= 0pt1.0 [Cleg, + Z Sp1.k [Clia, Property CACN
Wt
= 0ps10(1) + Y 0pp1.k(0) Definition RREF
=7,
- 5p+1,12
Now,
1=[B], dyir Definition RREF
- Z 1k | kdp+1
o m
= ootk Ol + D Stk [Clig . Property AACN
k=1 k=p+1
p m
= Z(O) [C]kderl + Z 6p+1,k [C}kderl
k k=p+1

1

5p+1,k [C]k-dp+1
k=p+1

7
Z Spr1,k( dp1 < dj,iq
k=p+1

=0

This contradiction shows that dpi1 > d »+1- By an entirely similar argument, we
could conclude that d,1 < d,,,, and therefore dpy1 = d, 1

Third Step. Now we establish that r = r’. Suppose that ' < r. By the arguments
above, we know that dy =d}, do =ds, ds=di, ..., d=d.,. For 1 </ <7 <r,

0= [B] Definition RREF

T'd[
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k=1

= Ork [C]kd@ + Z Sri [C]
k=1 k=r/+1

= 0k [Clg, + > m(0)
k=1 k=r'/+1

= 5rk [C]k}dg
k=1

= Ork [C]kdz
k=1

= 67"@

Now examine the entries of row r of B,

[B]rj = Z Ork [C}kj
k=1

=D 6 [Cly+ Y 6mlClyy
k=1

k=r'+1

ZTZM[C]MJF i 6,4(0)
k=1

k=r'+1

= Z Orke [C}kj
k=1

= Z(O) [C]kj
k=1

=0

Property AACN

Property AACN

Property CACN

Definition RREF

Property CACN

Definition RREF

27

So row r is a totally zero row, contradicting that this should be the bottommost
nonzero row of B. So 7’ > r. By an entirely similar argument, reversing the roles of
B and C, we would conclude that ' < r and therefore r = r’. Thus, combining the
first three steps we can say that D = D’. In other words, B and C have the same

pivot columns, in the same locations.

Fourth Step. In this final step, we will not argue by contradiction. Our intent
is to determine the values of the d;;. Notice that we can use the values of the d;

interchangeably for B and C. Here we go,
1= [B]idi

= ik [Clpg,
k=1

Definition RREF
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=01 [Clig, + Y 0k [Cla, Property CACN
i
= 0i(1) + > 6ix(0) Definition RREF
=
= dii
and for ¢ # i
0= [Bl,, Definition RREF
= Z Oik [C]kdg
k=1
=6t [Clyq, + Z dik: [Clyg, Property CACN
e
=0u(1) + Y _ 6i(0) Definition RREF
i
= dit

Finally, having determined the values of the d;;, we can show that B = C. For
l1<i<m,1<j<n,

[B]ij = Z Oik [C}kj
k=1

=0: [Cly; + > 0 [Cy Property CACN
Wi
=(1) [CL‘J‘ + (0) [C]kg
k=1
k#i
= [C]ij
So B and C have equal values in every entry, and so are the same matrix. |

We will now run through some examples of using these definitions and theorems
to solve some systems of equations. From now on, when we have a matrix in reduced
row-echelon form, we will mark the leading 1’s with a small box. In your work, you
can box ’em, circle ’em or write ’em in a different color — just identify ’em somehow.
This device will prove very useful later and is a very good habit to start developing
right now.

Example SAB Solutions for Archetype B
Let’s find the solutions to the following system of equations,
—Tx1 — 61 — 1223 = —33
5xq + dxo + Taxg = 24
x1 +4r3 =05
First, form the augmented matrix,

-7 -6 —-12 =33
) 5 7 24
1 0 4 )
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and work to reduced row-echelon form, first with j =1,

en [10 4 57 1 0 4 5
faols | 5 5 7 24]%{0 5 —13 -1

-7 —6 —-12 =33 -7 —6 —-12 =33

TR1+Rs3 0 4 5

——— 0 5 —-13 -1
0 —6 16 2

Now, with j = 2,

=~
(@31

s Ro 6R2+Rs

U‘L
w
MOT‘L ot

ooH
o
B

OOH

OH o

|
GUNUT [

w
en| |

-

And finally, with j = 3,

oo~
[F]=
— O
N Ot Ot

5 Ry 5 1B Rs+ Ry
2 5
= —13 —51 N
2

—4R3+ Ry

5
1
0
0
i 2
This is now the augmented matrix of a very simple system of equations, namely

r1 = —3, xo = 5, x3 = 2, which has an obvious solution. Furthermore, we can
see that this is the only solution to this system, so we have determined the entire

solution set,
-3
2

You might compare this example with the procedure we used in Example US.A

Archetypes A and B are meant to contrast each other in many respects. So let’s
solve Archetype A now.

Example SAA Solutions for Archetype A
Let’s find the solutions to the following system of equations,

$1—Z2+2(E3:1
2I1+I2+13:8
r1+T2 =05

First, form the augmented matrix,

1 -1 2 1
l2118]

1 1 0 5
and work to reduced row-echelon form, first with j =1,
1 -1 2 1 -1 2 1
—2R1+R2 lo 3 _3 f;| —1R1+R3 0 3 _3 6
1 1 0 5 0o 2 -2 4

Now, with 7 = 2,
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. 0 1 3
— |0 -1 2
0 0 0 0

The system of equations represented by this augmented matrix needs to be
considered a bit differently than that for Archetype B. First, the last row of the
matrix is the equation 0 = 0, which is always true, so it imposes no restrictions on
our possible solutions and therefore we can safely ignore it as we analyze the other
two equations. These equations are,

Z1+£L'3:3
332—1‘3:2.

While this system is fairly easy to solve, it also appears to have a multitude of
solutions. For example, choose 3 = 1 and see that then ;7 = 2 and x5 = 3 will
together form a solution. Or choose x3 = 0, and then discover that 1 = 3 and
xo = 2 lead to a solution. Try it yourself: pick any value of x3 you please, and figure
out what 1 and x2 should be to make the first and second equations (respectively)
true. We’ll wait while you do that. Because of this behavior, we say that x3 is a “free”
or “independent” variable. But why do we vary x3 and not some other variable?
For now, notice that the third column of the augmented matrix does not have any
leading 1’s in its column. With this idea, we can rearrange the two equations, solving
each for the variable that corresponds to the leading 1 in that row.

11:37173
To =2+ x3

To write the set of solution vectors in set notation, we have

S:{ c}

We'll learn more in the next section about systems with infinitely many solutions
and how to express their solution sets. Right now, you might look back at Example
IS. A

Example SAE Solutions for Archetype E
Let’s find the solutions to the following system of equations,

3—%‘3
2+1‘3
T3

2@y + 190 + Txg — Toy =2
—3x1 + 4x9 — drz — 614 = 3
T+ 2o +4x3 — dry =2
First, form the augmented matrix,
2 1 7 =7 2
-3 4 -5 -6 3
1 1 4 -5 2

and work to reduced row-echelon form, first with j =1,

e [11 4 =521 114 5 2
&l—?)zl—s —6 3]%[077—21 9]

2 1 7 =7 2 21 7 =7 2

1 4 -5 2
2hERs 1S 7 7 21 9
0

-1 -1 3 =2
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Now, with j = 2,

1 4 -5 2 1 4 -5 2

Lol Y 1 21 03 o 2S00 11 =3 2
0 7 7 21 9 0 7 7 —21 9

03 -2 0 0 3 -2 0
—1R2+R1 0 11 _3 9 —TR2+R3 0 1 _3 9
0 7 7 —21 9 0 0 0 0 -5

And finally, with j =4

)

0

0

3 -2 0 1] 0o 3 -2
1 -3 of MG 1] 1 -3 0
0

1 0 0 0 o [1]

Let’s analyze the equations in the system represented by this augmented matrix.
The third equation will read 0 = 1. This is patently false, all the time. No choice of
values for our variables will ever make it true. We're done. Since we cannot even make
the last equation true, we have no hope of making all of the equations simultaneously
true. So this system has no solutions, and its solution set is the empty set, # = { }
(Definition ES).

Notice that we could have reached this conclusion sooner. After performing the
row operation —7Ry + R3, we can see that the third equation reads 0 = —5, a false
statement. Since the system represented by this matrix has no solutions, none of the
systems represented has any solutions. However, for this example, we have chosen to
bring the matrix fully to reduced row-echelon form for the practice. A

|
|
o]
w
r
==&
(e}
]

These three examples (Example SAB, Example SAA, Example SAE) illustrate
the full range of possibilities for a system of linear equations — no solutions, one
solution, or infinitely many solutions. In the next section we’ll examine these three
scenarios more closely.

We (and everybody else) will often speak of “row-reducing” a matrix. This is
an informal way of saying we want to begin with a matrix A and then analyze the
matrix B that is row-equivalent to A and in reduced row-echelon form. So the term
row-reduce is used as a verb, but describes something a bit more complicated, since
we do not really change A. Theorem REMEF tells us that this process will always
be successful and Theorem RREFU tells us that B will be unambiguous. Typically,
an investigation of A will proceed by analyzing B and applying theorems whose
hypotheses include the row-equivalence of A and B, and usually the hypothesis that
B is in reduced row-echelon form.

Reading Questions

1. Is the matrix below in reduced row-echelon form? Why or why not?

1 5 0 6 8
00 1 2 0
00 0 0 1

2. Use row operations to convert the matrix below to reduced row-echelon form and report
the final matrix.

3. Find all the solutions to the system below by using an augmented matrix and row
operations. Report your final matrix in reduced row-echelon form and the set of solutions.

21 +3x2 —x3 =0
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T1+2x2 + 23 =3
1 +3x2 +3x3 =7

Exercises

C05 Each archetype below is a system of equations. Form the augmented matrix of the
system of equations, convert the matrix to reduced row-echelon form by using equation
operations and then describe the solution set of the original system of equations.

Archetype A, Archetype B, Archetype C, Archetype D, Archetype E, Archetype F, Archetype
G, Archetype H, Archetype I, Archetype J

For problems C10-C19, find all solutions to the system of linear equations. Use your favorite
computing device to row-reduce the augmented matrices for the systems, and write the
solutions as a set, using correct set notation.

ciof
2x1 — 3xo + x3 + Txa = 14
2x1 + 8xo — 4x3 + dry = —1
1+ 3x0 —3x3 =4
—5x1 + 2x2 + 3x3 + 424 = —19
ciit
3x1 +4x0 — x3 + 204 =
1 —2x2 + 3x3 + x4 = 2
101’2 — 101‘3 — T4 = 1
ci2f
2x1 + 4xo + dxz + Toxa = —26
1+ 2x2 + T3 — x4 = —4
—2x1 —4x0 + 23 + 114 = —10
cisf
T1 + 2w2 + 8x3 — Trg = —2
3x1 + 229 + 1223 — By =
—x1 + 22 +x3 — brgy = —10
Cc14'
21 + 22+ Txz — 224 =4
3x1 — 222 + 114 = 13
1+ 22+ 513 —3x4 =1
C15'
21 +3x2 — x3 — 94 = —16
x1 + 222 +23 =0
—z1 4+ 222 + 33 + 424 =8
c1e6'
2x1 + 3x2 + 1923 — 44 = 2
1 + 222 + 1223 — 324 =
—x1 + 212 + 8xs — drys =1
cirt

—x1 + bxes = —8
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—2x1 + dxo + dx3 + 224 =9
—3x1 —x2 +3x3 +x4 =3
Tx1 + 62 + dxs + x4 = 30

cisf
1+ 229 — 43 — 14 = 32
x1 + 3x9 — Txs — x5 = 33
r1 + 2x3 — 204 + 315 = 22
C19'
2z1 + 22 =06
—x1 —x2 = —2
3x1 +4x2 =4
3x1 + 512 = 2

For problems C30-C33, row-reduce the matrix without the aid of a calculator, indicating
the row operations you are using at each step using the notation of Definition RO.
csof
2 1 5 10
1 -3 -1 -2
4 =2 6 12

C31f
(1 2 —4]
-3 -1 -3
-2 1 -7
C32f
(1 1 1]
-4 -3 -2
3 2 1
c33t

M40 Consider the two 3 x 4 matrices below

1 3 -2 2 1 2 1 2
B=|-1 -2 -1 -1 cC=1|1 1 4 0
-1 -5 8 =3 -1 -1 -4 1

1. Row-reduce each matrix and determine that the reduced row-echelon forms of B and
C are identical. From this argue that B and C' are row-equivalent.

2. In the proof of Theorem RREFU, we begin by arguing that entries of row-equivalent
matrices are related by way of certain scalars and sums. In this example, we would
write that entries of B from row i that are in column j are linearly related to the
entries of C in column j from all three rows

[BL']' =i [Oh]‘ + diz [C]zj + dis [C]Sj 1<5<4
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For each 1 < ¢ < 3 find the corresponding three scalars in this relationship. So your
answer will be nine scalars, determined three at a time.

M45"  You keep a number of lizards, mice and peacocks as pets. There are a total of 108
legs and 30 tails in your menagerie. You have twice as many mice as lizards. How many of
each creature do you have?

M50" A parking lot has 66 vehicles (cars, trucks, motorcycles and bicycles) in it. There
are four times as many cars as trucks. The total number of tires (4 per car or truck, 2 per
motorcycle or bicycle) is 252. How many cars are there? How many bicycles?

T10" Prove that each of the three row operations (Definition RO) is reversible. More
precisely, if the matrix B is obtained from A by application of a single row operation, show
that there is a single row operation that will transform B back into A.

T11 Suppose that A, B and C are m x n matrices. Use the definition of row-equivalence
(Definition REM) to prove the following three facts.

1. A is row-equivalent to A.
2. If A is row-equivalent to B, then B is row-equivalent to A.

3. If A is row-equivalent to B, and B is row-equivalent to C, then A is row-equivalent
to C.

A relationship that satisfies these three properties is known as an equivalence relation,
an important idea in the study of various algebras. This is a formal way of saying that
a relationship behaves like equality, without requiring the relationship to be as strict as
equality itself. We’ll see it again in Theorem SER.

T12 Suppose that B is an m X n matrix in reduced row-echelon form. Build a new, likely

smaller, k x £ matrix C as follows. Keep any collection of k adjacent rows, k& < m. From
these rows, keep columns 1 through ¢, ¢ < n. Prove that C is in reduced row-echelon form.

T13 Generalize Exercise RREF.T12 by just keeping any k rows, and not requiring the
rows to be adjacent. Prove that any such matrix C' is in reduced row-echelon form.



Section TSS
Types of Solution Sets

We will now be more careful about analyzing the reduced row-echelon form derived
from the augmented matrix of a system of linear equations. In particular, we will see
how to systematically handle the situation when we have infinitely many solutions to
a system, and we will prove that every system of linear equations has either zero, one
or infinitely many solutions. With these tools, we will be able to solve any system
by a well-described method.

Subsection CS
Consistent Systems

The computer scientist Donald Knuth said, “Science is what we understand well
enough to explain to a computer. Art is everything else.” In this section we’ll remove
solving systems of equations from the realm of art, and into the realm of science.
We begin with a definition.

Definition CS Consistent System
A system of linear equations is consistent if it has at least one solution. Otherwise,
the system is called inconsistent. O

We will want to first recognize when a system is inconsistent or consistent, and in
the case of consistent systems we will be able to further refine the types of solutions
possible. We will do this by analyzing the reduced row-echelon form of a matrix,
using the value of r, and the sets of column indices, D and F', first defined back in
Definition RREF.

Use of the notation for the elements of D and F' can be a bit confusing, since
we have subscripted variables that are in turn equal to integers used to index the
matrix. However, many questions about matrices and systems of equations can be
answered once we know r, D and F'. The choice of the letters D and F refer to our
upcoming definition of dependent and free variables (Definition IDV). An example
will help us begin to get comfortable with this aspect of reduced row-echelon form.

Example RREFN Reduced row-echelon form notation
For the 5 x 9 matrix

5 0 0 28 0 5 —1
0 0 0 47 0 2 0
B=10 0 0 39 0 3 —6
00 0 0 00 4 2
00 0 0 00 0 0 0
in reduced row-echelon form we have
r=+4
dy =1 dy =3 dz =4 dy =17
fi=2 f2=5 f3=6 fi=38 f5=9

Notice that the sets
D= {dla d27 d3a d4} = {17 37 47 7} F= {fla f27 f37 f47 f5} = {2’ 57 65 87 9}

have nothing in common and together account for all of the columns of B (we say it
is a partition of the set of column indices). A

The number r is the single most important piece of information we can get from
the reduced row-echelon form of a matrix. It is defined as the number of nonzero
rows, but since each nonzero row has a leading 1, it is also the number of leading
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1’s present. For each leading 1, we have a pivot column, so r is also the number of
pivot columns. Repeating ourselves, r is the number of nonzero rows, the number of
leading 1’s and the number of pivot columns. Across different situations, each of
these interpretations of the meaning of r will be useful.

Before proving some theorems about the possibilities for solution sets to systems
of equations, let’s analyze one particular system with an infinite solution set very
carefully as an example. We’ll use this technique frequently, and shortly we’ll refine
it slightly.

Archetypes T and J are both fairly large for doing computations by hand (though
not impossibly large). Their properties are very similar, so we will frequently analyze
the situation in Archetype I, and leave you the joy of analyzing Archetype J yourself.
So work through Archetype I with the text, by hand and/or with a computer, and
then tackle Archetype J yourself (and check your results with those listed). Notice
too that the archetypes describing systems of equations each lists the values of r, D
and F'. Here we go. ..

Example ISSI Describing infinite solution sets, Archetype I
Archetype I is the system of m = 4 equations in n = 7 variables.
T, +4r9 — x4 + Tx6 — 927 = 3
2x1 +8x92 —x3 +3x4 + 925 — 1326 + Tx7 =9
23 — 3xy —4das + 1206 — 8x7 =1
—x1 —4xo + 223 + 4wy + 8x5 — 3lwg + 3727 =4
This system has a 4 x 8 augmented matrix that is row-equivalent to the following
matrix (check this!), and which is in reduced row-echelon form (the existence of

this matrix is guaranteed by Theorem REMEF and its uniqueness is guaranteed by
Theorem RREFU),

(1] 4 0 0 2 1 -3 4
0 01 o 1 -3 5 2
0 0 0 [1] 2 -6 6 1
00 0 0 0 0 0 0

So we find that r = 3 and
D= {d17 d2’ d3} = {15 3, 4} F= {fla an f37 f47 f5} = {27 5,6, 7, 8}

Let i denote one of the » = 3 non-zero rows, and then we see that we can solve
the corresponding equation represented by this row for the variable x4, and write it
as a linear function of the variables z¢,, xy,, x4, ¢, (notice that f5 = 8 does not
reference a variable). We’ll do this now, but you can already see how the subscripts
upon subscripts takes some getting used to.

(i=1) xq, =21 =4 —4dxg — 225 — x5 + 327
(i:2) T
(t=3) Zagy = T4 =1 — 225 + 626 — 627

Each element of the set F' = {f1, fo, f3, f1, f5} = {2, 5, 6, 7, 8} is the index
of a variable, except for f5 = 8. We refer to zy, = x2, 24, = x5, 4, = 26 and
xy, = x7 as “free” (or “independent”) variables since they are allowed to assume
any possible combination of values that we can imagine and we can continue on to
build a solution to the system by solving individual equations for the values of the
other (“dependent”) variables.

Each element of the set D = {dy, da, d3} = {1, 3, 4} is the index of a variable.
We refer to the variables z4, = =1, 24, = 23 and x4, = x4 as “dependent” variables
since they depend on the independent variables. More precisely, for each possible
choice of values for the independent variables we get exactly one set of values for

2:$3:2—I5+3I6—5LE7
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the dependent variables that combine to form a solution of the system.
To express the solutions as a set, we write

(4 — 4ro — 25 — T6 + 3337_
Z2
2 — x5 + 3xg — dx7
1—2$5+6£L’6—61’7 T2, Ts5, Tg, I7€C
x5
Te
Z7

The condition that xo, x5, T, 7 € C is how we specify that the variables
To, X5, Tg, Ty are “free” to assume any possible values.

This systematic approach to solving a system of equations will allow us to create
a precise description of the solution set for any consistent system once we have found
the reduced row-echelon form of the augmented matrix. It will work just as well
when the set of free variables is empty and we get just a single solution. And we
could program a computer to do it! Now have a whack at Archetype J (Exercise
TSS.T10), mimicking the discussion in this example. We’ll still be here when you
get back. A

Using the reduced row-echelon form of the augmented matrix of a system of
equations to determine the nature of the solution set of the system is a very key
idea. So let’s look at one more example like the last one. But first a definition, and
then the example. We mix our metaphors a bit when we call variables free versus
dependent. Maybe we should call dependent variables “enslaved”?

Definition IDV Independent and Dependent Variables

Suppose A is the augmented matrix of a consistent system of linear equations and
B is a row-equivalent matrix in reduced row-echelon form. Suppose j is the index
of a column of B that contains the leading 1 for some row (i.e. column j is a pivot
column). Then the variable z; is dependent. A variable that is not dependent is
called independent or free. O

If you studied this definition carefully, you might wonder what to do if the system
has n variables and column n + 1 is a pivot column? We will see shortly, by Theorem
RCLS, that this never happens for a consistent system.

Example FDV Free and dependent variables
Consider the system of five equations in five variables,

T, — To — 2x3 + x4 + 115 = 13
1 — X2+ a3+ x4 + dxs =16
2x1 — 229 + x4 + 10z5 = 21

2x1 — 229 — x3 + 314 + 2025 = 38
2@y — 220 + x3 + x4 + 815 = 22

whose augmented matrix row-reduces to

1] -1 0 0o 3 6
0 0 0 -2 1
0 0 o [1] 4 9
0O 0 0 0 0 0
0O 0 0 0 0 0

There are leading 1’s in columns 1, 3 and 4, so D = {1, 3, 4}. From this we
know that the variables 1, x3 and x4 will be dependent variables, and each of the
r = 3 nonzero rows of the row-reduced matrix will yield an expression for one of
these three variables. The set F' is all the remaining column indices, F' = {2, 5, 6}.
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That 6 € F refers to the column originating from the vector of constants, but the
remaining indices in F will correspond to free variables, so x5 and x5 (the remaining
variables) are our free variables. The resulting three equations that describe our
solution set are then,

(Dﬂd1 :xl) 1 =6+ x0 — 375
(x4, = 3) r3 =1+ 25
(xgy = 4) T4 =9 — 4as

Make sure you understand where these three equations came from, and notice
how the location of the leading 1’s determined the variables on the left-hand side of
each equation. We can compactly describe the solution set as,

6+ xo — 3x5
T2
S = 1+ 2z5 o, x5 € C
9— 45(}5
Zs
Notice how we express the freedom for x4 and z5: o, x5 € C. A

Sets are an important part of algebra, and we’ve seen a few already. Being
comfortable with sets is important for understanding and writing proofs. If you
haven’t already, pay a visit now to Section SET.

We can now use the values of m, n, r, and the independent and dependent
variables to categorize the solution sets for linear systems through a sequence of
theorems.

Through the following sequence of proofs, you will want to consult three proof
techniques. See Proof Technique E, Proof Technique N, Proof Technique CP.

First we have an important theorem that explores the distinction between
consistent and inconsistent linear systems.

Theorem RCLS Recognizing Consistency of a Linear System

Suppose A is the augmented matriz of a system of linear equations with n variables.
Suppose also that B is a row-equivalent matriz in reduced row-echelon form with r
nonzero rows. Then the system of equations is inconsistent if and only if the leading
1 of row r is located in column n+ 1 of B.

Proof. (<) The first half of the proof begins with the assumption that the leading 1
of row r is located in column n 4+ 1 of B. Then row r of B begins with n consecutive
zeros, finishing with the leading 1. This is a representation of the equation 0 = 1,
which is false. Since this equation is false for any collection of values we might
choose for the variables, there are no solutions for the system of equations, and it is
inconsistent.

(=) For the second half of the proof, we wish to show that if we assume the
system is inconsistent, then the final leading 1 is located in the last column. But
instead of proving this directly, we’ll form the logically equivalent statement that is
the contrapositive, and prove that instead (see Proof Technique CP). Turning the
implication around, and negating each portion, we arrive at the logically equivalent
statement: If the leading 1 of row 7 is not in column n + 1, then the system of
equations is consistent.

If the leading 1 for row r is located somewhere in columns 1 through n, then
every preceding row’s leading 1 is also located in columns 1 through n. In other
words, since the last leading 1 is not in the last column, no leading 1 for any row is
in the last column, due to the echelon layout of the leading 1’s (Definition RREF).
We will now construct a solution to the system by setting each dependent variable
to the entry of the final column for the row with the corresponding leading 1, and
setting each free variable to zero. That sentence is pretty vague, so let’s be more
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precise. Using our notation for the sets D and F' from the reduced row-echelon form
(Definition RREF):

= [B]

These values for the variables make the equations represented by the first r rows
of B all true (convince yourself of this). Rows numbered greater than r (if any) are
all zero rows, hence represent the equation 0 = 0 and are also all true. We have now
identified one solution to the system represented by B, and hence a solution to the
system represented by A (Theorem REMES). So we can say the system is consistent
(Definition CS). [ ]

Td,

0

ing1, 1<i<r 7, =0, 1<i<n-—r

The beauty of this theorem being an equivalence is that we can unequivocally
test to see if a system is consistent or inconsistent by looking at just a single entry
of the reduced row-echelon form matrix. We could program a computer to do it!

Notice that for a consistent system the row-reduced augmented matrix has
n+ 1 € F, so the largest element of F does not refer to a variable. Also, for an
inconsistent system, n + 1 € D, and it then does not make much sense to discuss
whether or not variables are free or dependent since there is no solution. Take a look
back at Definition IDV and see why we did not need to consider the possibility of
referencing x, 1 as a dependent variable.

With the characterization of Theorem RCLS, we can explore the relationships
between r and n in light of the consistency of a system of equations. First, a situation
where we can quickly conclude the inconsistency of a system.

Theorem ISRN Inconsistent Systems, r and n

Suppose A is the augmented matriz of a system of linear equations in n variables.
Suppose also that B is a row-equivalent matriz in reduced row-echelon form with
r rows that are not completely zeros. If r = n + 1, then the system of equations is
inconsistent.

Proof. If r =n+1,then D = {1, 2, 3, ..., n, n+ 1} and every column of B contains
a leading 1 and is a pivot column. In particular, the entry of column n + 1 for row
r=mn+11is a leading 1. Theorem RCLS then says that the system is inconsistent.Hl

Do not confuse Theorem ISRN with its converse! Go check out Proof Technique
CV right now.

Next, if a system is consistent, we can distinguish between a unique solution and
infinitely many solutions, and furthermore, we recognize that these are the only two
possibilities.

Theorem CSRN Consistent Systems, r and n

Suppose A is the augmented matrix of a consistent system of linear equations with
n variables. Suppose also that B is a row-equivalent matrix in reduced row-echelon
form with r rows that are not zero rows. Then r < n. If r = n, then the system has
a unique solution, and if r < n, then the system has infinitely many solutions.

Proof. This theorem contains three implications that we must establish. Notice first
that B has n+ 1 columns, so there can be at most n+ 1 pivot columns, i.e. r < n+1.
If r = n + 1, then Theorem ISRN tells us that the system is inconsistent, contrary
to our hypothesis. We are left with r < n.

When r = n, we find n —r = 0 free variables (i.e. F = {n + 1}) and any solution
must equal the unique solution given by the first n entries of column n + 1 of B.

When r < n, we have n — r > 0 free variables, corresponding to columns of
B without a leading 1, excepting the final column, which also does not contain a
leading 1 by Theorem RCLS. By varying the values of the free variables suitably, we
can demonstrate infinitely many solutions. |
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Subsection FV
Free Variables

The next theorem simply states a conclusion from the final paragraph of the previous
proof, allowing us to state explicitly the number of free variables for a consistent
system.

Theorem FVCS Free Variables for Consistent Systems

Suppose A is the augmented matriz of a consistent system of linear equations with
n variables. Suppose also that B is a row-equivalent matriz in reduced row-echelon
form with r rows that are not completely zeros. Then the solution set can be described
with n — r free variables.

Proof. See the proof of Theorem CSRN. ]

Example CFV Counting free variables

For each archetype that is a system of equations, the values of n and r are listed.
Many also contain a few sample solutions. We can use this information profitably,
as illustrated by four examples.

1. Archetype A has n = 3 and r = 2. It can be seen to be consistent by the
sample solutions given. Its solution set then has n — r = 1 free variables, and
therefore will be infinite.

2. Archetype B has n = 3 and r» = 3. It can be seen to be consistent by the single
sample solution given. Its solution set can then be described with n —r =0
free variables, and therefore will have just the single solution.

3. Archetype H has n = 2 and r = 3. In this case, r = n + 1, so Theorem ISRN
says the system is inconsistent. We should not try to apply Theorem FVCS
to count free variables, since the theorem only applies to consistent systems.
(What would happen if you did?)

4. Archetype E has n = 4 and r = 3. However, by looking at the reduced row-
echelon form of the augmented matrix, we find a leading 1 in row 3, column
5. By Theorem RCLS we recognize the system as inconsistent. (Why doesn’t
this example contradict Theorem ISRN?)

A

We have accomplished a lot so far, but our main goal has been the following
theorem, which is now very simple to prove. The proof is so simple that we ought to
call it a corollary, but the result is important enough that it deserves to be called a
theorem. (See Proof Technique LC.) Notice that this theorem was presaged first by
Example TTS and further foreshadowed by other examples.

Theorem PSSLS Possible Solution Sets for Linear Systems
A system of linear equations has no solutions, a unique solution or infinitely many
solutions.

Proof. By its definition, a system is either inconsistent or consistent (Definition CS).
The first case describes systems with no solutions. For consistent systems, we have
the remaining two possibilities as guaranteed by, and described in, Theorem CSRN.
|

Here is a diagram that consolidates several of our theorems from this section,
and which is of practical use when you analyze systems of equations.
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Theorem RCLS

no leading 1 in a leading 1 in
column n + 1 column n + 1

Consistent Inconsistent

Theorem FVCS

Infinite Solutions Unique Solution

Diagram DTSLS: Decision Tree for Solving Linear Systems

We have one more theorem to round out our set of tools for determining solution
sets to systems of linear equations.

Theorem CMVEI Consistent, More Variables than Equations, Infinite solutions
Suppose a consistent system of linear equations has m equations in n variables. If
n > m, then the system has infinitely many solutions.

Proof. Suppose that the augmented matrix of the system of equations is row-
equivalent to B, a matrix in reduced row-echelon form with r nonzero rows. Because
B has m rows in total, the number that are nonzero rows is less. In other words,
r < m. Follow this with the hypothesis that n > m and we find that the system has
a solution set described by at least one free variable because

n—r>n—m>0.

A consistent system with free variables will have an infinite number of solutions,
as given by Theorem CSRN. [ |

Notice that to use this theorem we need only know that the system is consistent,
together with the values of m and n. We do not necessarily have to compute a
row-equivalent reduced row-echelon form matrix, even though we discussed such a
matrix in the proof. This is the substance of the following example.

Example OSGMD One solution gives many, Archetype D
Archetype D is the system of m = 3 equations in n = 4 variables,

21’1 +l’2+71’3*7$4:8
—3x1 + 4x9 — dxz — 64 = —12
T1 + To +4x3 — Dry =4

and the solution =1 = 0, z2 = 1, z3 = 2, x4 = 1 can be checked easily by
substitution. Having been handed this solution, we know the system is consistent.
This, together with n > m, allows us to apply Theorem CMVEI and conclude that
the system has infinitely many solutions. A

These theorems give us the procedures and implications that allow us to com-
pletely solve any system of linear equations. The main computational tool is using
row operations to convert an augmented matrix into reduced row-echelon form.
Here’s a broad outline of how we would instruct a computer to solve a system of
linear equations.
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1. Represent a system of linear equations by an augmented matrix (an array is
the appropriate data structure in most computer languages).

2. Convert the matrix to a row-equivalent matrix in reduced row-echelon form
using the procedure from the proof of Theorem REMEF.

3. Determine r and locate the leading 1 of row r. If it is in column n + 1, output
the statement that the system is inconsistent and halt.

4. With the leading 1 of row r not in column n + 1, there are two possibilities:

(a) r = n and the solution is unique. It can be read off directly from the
entries in rows 1 through n of column n + 1.

(b) r < n and there are infinitely many solutions. If only a single solution
is needed, set all the free variables to zero and read off the dependent
variable values from column n + 1, as in the second half of the proof of
Theorem RCLS. If the entire solution set is required, figure out some nice
compact way to describe it, since your finite computer is not big enough
to hold all the solutions (we’ll have such a way soon).

The above makes it all sound a bit simpler than it really is. In practice, row
operations employ division (usually to get a leading entry of a row to convert to
a leading 1) and that will introduce round-off errors. Entries that should be zero
sometimes end up being very, very small nonzero entries, or small entries lead to
overflow errors when used as divisors. A variety of strategies can be employed to
minimize these sorts of errors, and this is one of the main topics in the important
subject known as numerical linear algebra.

In this section we’'ve gained a foolproof procedure for solving any system of linear
equations, no matter how many equations or variables. We also have a handful of
theorems that allow us to determine partial information about a solution set without
actually constructing the whole set itself. Donald Knuth would be proud.

Reading Questions

1. How can we easily recognize when a system of linear equations is inconsistent or not?

2. Suppose we have converted the augmented matrix of a system of equations into reduced
row-echelon form. How do we then identify the dependent and independent (free)
variables?

3. What are the possible solution sets for a system of linear equations?

Exercises

C10 In the spirit of Example ISSI, describe the infinite solution set for Archetype J.

For Exercises C21-C28, find the solution set of the system of linear equations. Give the
values of n and r, and interpret your answers in light of the theorems of this section.

c21f
1 +4x0+3x3 — x4 =25
1 — T2+ 23+ 214 =6
4:L’1—|—:L’2—|—6.’E3+5$4 =9

Cc22f

(E1—2.’E2+.’E3—.’I}4:3

2r1 —4xo +x3 + x4 = 2
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x1 — 209 —2x3+3x4 =1

Cc23'
Ty — 2% +x3 — x4 =3
1+ a2+ T3 —24=1
xT1 +x3— T4 =2
c24f
1 —2x0 +x3 — x4 = 2
T1+ X2+ T3 — x4 =2
T1 +x3 — x4 =2
c25'
xr1 + 2209 +3x3 =1
201 — X2 +2x3 =2
3z1+a2+a3=4
:I}2+2.133:6
C26'
1+ 222 4+ 33 =
201 — X2 +x3 =2
3z1 + a2+ 23 =4
bxro +2x3 =1
C27!
x1 + 222 + 323 =0
201 — X2 +2x3 =2
.’E1*8$2*7$3:1
xo+2x3 =0
C28'

1+ 222 4+ 323 =
201 — X2 +x3 =2
$1—8502—75L‘3:1

xo +x3 =0

M45"  The details for Archetype J include several sample solutions. Verify that one of
these solutions is correct (any one, but just one). Based only on this evidence, and especially
without doing any row operations, explain how you know this system of linear equations
has infinitely many solutions.

M46 Consider Archetype J, and specifically the row-reduced version of the augmented
matrix of the system of equations, denoted as B here, and the values of r, D and F
immediately following. Determine the values of the entries

[Blia, Blsay [Blia, [Blsa, [Bloys [Blags [Blays [Blagn [Bliy, [Blsy,
(See Exercise TSS.M70 for a generalization.)

For Exercises M51-M57 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.

M51" A consistent system of 8 equations in 6 variables.
M527 A consistent system of 6 equations in 8 variables.

M53" A system of 5 equations in 9 variables.
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M54" A system with 12 equations in 35 variables.
M567 A system with 6 equations in 12 variables.

M57" A system with 8 equations and 6 variables. The reduced row-echelon form of
the augmented matrix of the system has 7 pivot columns.

M60 Without doing any computations, and without examining any solutions, say as much
as possible about the form of the solution set for each archetype that is a system of equations.

Archetype A, Archetype B, Archetype C, Archetype D, Archetype E, Archetype F, Archetype
G, Archetype H, Archetype I, Archetype J

M70 Suppose that B is a matrix in reduced row-echelon form that is equivalent to the
augmented matrix of a system of equations with m equations in n variables. Let r, D and F'
be as defined in Definition RREF. What can you conclude, in general, about the following

entries?
[Bli4, [B] (Blia, [Blsa, [Blayqn [Blayys [Blays [Blay, [Bliy, [Blyy,

If you cannot conclude anything about an entry, then say so. (See Exercise TSS.M46.)

3,ds

T10" An inconsistent system may have r > n. If we try (incorrectly!) to apply Theorem
FVCS to such a system, how many free variables would we discover?

T20 Suppose that B is a matrix in reduced row-echelon form that is equivalent to the
augmented matrix of a system of equations with m equations in n variables. Let r, D and
F be as defined in Definition RREF. Prove that di > k for all 1 < k < r. Then suppose
that r > 2 and 1 < k < £ < r and determine what can you conclude, in general, about the
following entries.

[B} [B] [B} [B]dk,k [B]dk,e [B}dg,k [B]dk:fi, [B]dlhfk

If you cannot conclude anything about an entry, then say so. (See Exercise TSS.M46 and
Exercise TSS.M70.)

T40" Suppose that the coefficient matrix of a consistent system of linear equations has
two columns that are identical. Prove that the system has infinitely many solutions.

k,dy k,dy £,dy,

T41" Consider the system of linear equations £LS(A, b), and suppose that every element
of the vector of constants b is a common multiple of the corresponding element of a certain
column of A. More precisely, there is a complex number «, and a column index j, such
that [b], = a'[A],; for all 4. Prove that the system is consistent.



Section HSE
Homogeneous Systems of Equations

In this section we specialize to systems of linear equations where every equation
has a zero as its constant term. Along the way, we will begin to express more and
more ideas in the language of matrices and begin a move away from writing out
whole systems of equations. The ideas initiated in this section will carry through
the remainder of the course.

Subsection SHS
Solutions of Homogeneous Systems

As usual, we begin with a definition.

Definition HS Homogeneous System
A system of linear equations, LS(A, b) is homogeneous if the vector of constants
is the zero vector, in other words, if b = 0. O

Example AHSAC Archetype C as a homogeneous system

For each archetype that is a system of equations, we have formulated a similar, yet
different, homogeneous system of equations by replacing each equation’s constant
term with a zero. To wit, for Archetype C, we can convert the original system of
equations into the homogeneous system,

201 — 320 +x3 — 624 =0
4r1 + 29+ 223 + 924 =0
3r14+ 29 +x3+8x4 =0

Can you quickly find a solution to this system without row-reducing the aug-
mented matrix? A

As you might have discovered by studying Example AHSAC, setting each variable
to zero will always be a solution of a homogeneous system. This is the substance of
the following theorem.

Theorem HSC Homogeneous Systems are Consistent
Suppose that a system of linear equations is homogeneous. Then the system is
consistent.

Proof. Set each variable of the system to zero. When substituting these values into
each equation, the left-hand side evaluates to zero, no matter what the coefficients
are. Since a homogeneous system has zero on the right-hand side of each equation
as the constant term, each equation is true. With one demonstrated solution, we
can call the system consistent. |

Since this solution is so obvious, we now define it as the trivial solution.

Definition TSHSE Trivial Solution to Homogeneous Systems of Equations

Suppose a homogeneous system of linear equations has n variables. The solution

21 =0,29=0, ..., 2, =0 (i.e. x = 0) is called the trivial solution. |
Here are three typical examples, which we will reference throughout this section.

Work through the row operations as we bring each to reduced row-echelon form.
Also notice what is similar in each example, and what differs.

Example HUSAB Homogeneous, unique solution, Archetype B
Archetype B can be converted to the homogeneous system,

711171 + 2262 - 14933 =0
23x1 — 629 + 3323 =0
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1421 — 229 + 1723 =0

whose augmented matrix row-reduces to

0 0 0
0 0 0
0 0 0

By Theorem HSC, the system is consistent, and so the computation n —r =
3 — 3 = 0 means the solution set contains just a single solution. Then, this lone
solution must be the trivial solution. AN

Example HISAA Homogeneous, infinite solutions, Archetype A
Archetype A can be converted to the homogeneous system,

Ty —To+2x3 =0
201+ a9+ 23 =0
T, + T2 =0
whose augmented matrix row-reduces to

0 1 0
-1 0

0 0 O
By Theorem HSC, the system is consistent, and so the computation n — r =
3 — 2 = 1 means the solution set contains one free variable by Theorem FVCS, and
hence has infinitely many solutions. We can describe this solution set using the free

variable x3,
1 —Z3
S{|fﬂ2] $1$3,I2I3}{lx3]I3€C}
I3 I3

Geometrically, these are points in three dimensions that lie on a line through the
origin. A

Example HISAD Homogeneous, infinite solutions, Archetype D
Archetype D (and identically, Archetype E) can be converted to the homogeneous
system,

2$1+$2+7$3*7$4:O
—3x1 + 4xo — drz — 624 =0
T + xo + 4x3 — dxry =0

whose augmented matrix row-reduces to

1] -2 0
1—30

By Theorem HSC, the system is consistent, and so the computation n —r =
4 — 2 = 2 means the solution set contains two free variables by Theorem FVCS, and
hence has infinitely many solutions. We can describe this solution set using the free
variables x3 and x4,
4l
T2
Zs3
Tq

S = x1 = —3x3 + 224, T2 = —x3 + 314
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—3x3 + 214
= —&3 + 314 xr3, T4 € C
x3

T4

A

After working through these examples, you might perform the same computations
for the slightly larger example, Archetype J.

Notice that when we do row operations on the augmented matrix of a homogeneous
system of linear equations the last column of the matrix is all zeros. Any one of
the three allowable row operations will convert zeros to zeros and thus, the final
column of the matrix in reduced row-echelon form will also be all zeros. So in this
case, we may be as likely to reference only the coefficient matrix and presume that
we remember that the final column begins with zeros, and after any number of row
operations is still zero.

Example HISAD suggests the following theorem.

Theorem HMVEI Homogeneous, More Variables than Equations, Infinite solutions
Suppose that a homogeneous system of linear equations has m equations and n
variables with n > m. Then the system has infinitely many solutions.

Proof. We are assuming the system is homogeneous, so Theorem HSC says it is
consistent. Then the hypothesis that n > m, together with Theorem CMVEI, gives
infinitely many solutions. n

Example HUSAB and Example HISAA are concerned with homogeneous systems
where n = m and expose a fundamental distinction between the two examples. One
has a unique solution, while the other has infinitely many. These are exactly the
only two possibilities for a homogeneous system and illustrate that each is possible
(unlike the case when n > m where Theorem HMVEI tells us that there is only one
possibility for a homogeneous system).

Subsection NSM
Null Space of a Matrix

The set of solutions to a homogeneous system (which by Theorem HSC is never
empty) is of enough interest to warrant its own name. However, we define it as a
property of the coefficient matrix, not as a property of some system of equations.

Definition NSM Null Space of a Matrix
The null space of a matrix A, denoted N'(A), is the set of all the vectors that are
solutions to the homogeneous system L£LS(A4, 0). O

In the Archetypes (Archetypes) each example that is a system of equations also
has a corresponding homogeneous system of equations listed, and several sample
solutions are given. These solutions will be elements of the null space of the coefficient
matrix. We’ll look at one example.

Example NSEAI Null space elements of Archetype I
The write-up for Archetype I lists several solutions of the corresponding homogeneous
system. Here are two, written as solution vectors. We can say that they are in the



SHSE BEEZER: A FIRST COURSE IN LINEAR ALGEBRA 48

null space of the coefficient matrix for the system of equations in Archetype I.

3 —4
0 1
-5 -3
x=|—6 y=|-2
0 1
0 1
1 1
However, the vector
R
0
0
z= |0
0
0
2

is not in the null space, since it is not a solution to the homogeneous system. For
example, it fails to even make the first equation true. A

Here are two (prototypical) examples of the computation of the null space of a
matrix.

Example CNS1 Computing a null space, no. 1
Let’s compute the null space of
2 -1 7 -3 -8
A=11 0 2 4 9
2 2 -2 -1 8

which we write as A/(A). Translating Definition NSM, we simply desire to solve the
homogeneous system L£LS(A, 0). So we row-reduce the augmented matrix to obtain

1] o 2 o0 10
0 [1] -3 0 4 0
0o 0 o [1] 2 0

The variables (of the homogeneous system) 3 and x5 are free (since columns 1,
2 and 4 are pivot columns), so we arrange the equations represented by the matrix
in reduced row-echelon form to
T1 = —2x3 — 25
Ty = 3£U3 - 4.’£5

Ty = —21‘5

So we can write the infinite solution set as sets using column vectors,
—2.233 — T5
3333 — 4.1‘5
N(A) = T3 xr3, Ts € C
72%5
Ts

Example CNS2 Computing a null space, no. 2
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Let’s compute the null space of

46 1
1041
C=|5 6 7
407 1

which we write as A(C). Translating Definition NSM, we simply desire to solve the
homogeneous system LS(C, 0). So we row-reduce the augmented matrix to obtain

0 0 0

0 0

0 0

0O 0 0

There are no free variables in the homogeneous system represented by the row-

reduced matrix, so there is only the trivial solution, the zero vector, 0. So we can
write the (trivial) solution set as

o)

1. What is always true of the solution set for a homogeneous system of equations?

oo O

Reading Questions

2. Suppose a homogeneous system of equations has 13 variables and 8 equations. How
many solutions will it have? Why?

3. Describe in words (not symbols) the null space of a matrix.

Exercises

C10 Each Archetype (Archetypes) that is a system of equations has a corresponding
homogeneous system with the same coefficient matrix. Compute the set of solutions for
each. Notice that these solution sets are the null spaces of the coefficient matrices.

Archetype A, Archetype B, Archetype C, Archetype D/Archetype E, Archetype F, Archetype
G/Archetype H, Archetype I, Archetype J

C20 Archetype K and Archetype L are simply 5 x 5 matrices (i.e. they are not systems
of equations). Compute the null space of each matrix.

For Exercises C21-C23, solve the given homogeneous linear system. Compare your results
to the results of the corresponding exercise in Section T'SS.

c21f
1’1+4.’L’2+3.’E3*.’E4:0
r1 — X2+ x3+ 224 =0
4x1 + x2 + 623 + 524 =0

c22f
.’L’1—2.’E2+.’E3—.’1}4:0
2r1 —4xo +x3+24 =0
xr1 — 222 — 223+ 324 =0

Cc23'

r1 — 202 +x3 — 24 =0
T1+ T2 +x3—24 =0

1 +x3—24=0
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For Exercises C25-C27, solve the given homogeneous linear system. Compare your results
to the results of the corresponding exercise in Section TSS.

c2s5f
r1+ 2x2 + 323 =0
201 —x2 +2x3 =0
31+ w2+ 13 =0
o +2x3 =0
c26'
1+ 222 4+ 33 =
201 — 22+ 23 =0
321 +x24+23=0
bxo +2x3 =0
ca7t

x1+ 222 +3x3 =0
201 —x2 +x3 =0
1 —8x2 — Tx3 =0

xo+2x3=0

C30" Compute the null space of the matrix A, N(A).

9 4 1 3
B S
A=19 4 0o _3
9 4 -1 -7

BSOS — 00

C31"  Find the null space of the matrix B, N'(B).
-6 4 36 6
B=|2 -1 10 -1
-3 2 =18 3

M45 Without doing any computations, and without examining any solutions, say as
much as possible about the form of the solution set for corresponding homogeneous system
of equations of each archetype that is a system of equations.

Archetype A, Archetype B, Archetype C, Archetype D/Archetype E, Archetype F, Archetype
G/Archetype H, Archetype I, Archetype J

For Exercises M50-M52 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.

M507 A homogeneous system of 8 equations in 8 variables.
M517 A homogeneous system of 8 equations in 9 variables.

M527 A homogeneous system of 8 equations in 7 variables.

T10" Prove or disprove: A system of linear equations is homogeneous if and only if the
system has the zero vector as a solution.

T11"  Suppose that two systems of linear equations are equivalent. Prove that if the first
system is homogeneous, then the second system is homogeneous. Notice that this will
allow us to conclude that two equivalent systems are either both homogeneous or both not
homogeneous.

T12 Give an alternate proof of Theorem HSC that uses Theorem RCLS.
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T20" Consider the homogeneous system of linear equations LS(A, 0), and suppose that

Ul 4u1
u 4u2
us 4u3

u= is one solution to the system of equations. Prove that v = is also a

Un Aup
solution to LS(A, 0).



Section NM
Nonsingular Matrices

In this section we specialize further and consider matrices with equal numbers of
rows and columns, which when considered as coefficient matrices lead to systems
with equal numbers of equations and variables. We will see in the second half of
the course (Chapter D, Chapter E Chapter LT, Chapter R) that these matrices are
especially important.

Subsection NM
Nonsingular Matrices

Our theorems will now establish connections between systems of equations (homo-
geneous or otherwise), augmented matrices representing those systems, coefficient
matrices, constant vectors, the reduced row-echelon form of matrices (augmented and
coefficient) and solution sets. Be very careful in your reading, writing and speaking
about systems of equations, matrices and sets of vectors. A system of equations is
not a matrix, a matrix is not a solution set, and a solution set is not a system of
equations. Now would be a great time to review the discussion about speaking and
writing mathematics in Proof Technique L.

Definition SQM Square Matrix

A matrix with m rows and n columns is square if m = n. In this case, we say the
matrix has size n. To emphasize the situation when a matrix is not square, we will
call it rectangular. O

We can now present one of the central definitions of linear algebra.

Definition NM Nonsingular Matrix

Suppose A is a square matrix. Suppose further that the solution set to the homoge-
neous linear system of equations LS(A4, 0) is {0}, in other words, the system has
only the trivial solution. Then we say that A is a nonsingular matrix. Otherwise
we say A is a singular matrix. (Il

We can investigate whether any square matrix is nonsingular or not, no matter if
the matrix is derived somehow from a system of equations or if it is simply a matrix.
The definition says that to perform this investigation we must construct a very
specific system of equations (homogeneous, with the matrix as the coefficient matrix)
and look at its solution set. We will have theorems in this section that connect
nonsingular matrices with systems of equations, creating more opportunities for
confusion. Convince yourself now of two observations, (1) we can decide nonsingularity
for any square matrix, and (2) the determination of nonsingularity involves the
solution set for a certain homogeneous system of equations.

Notice that it makes no sense to call a system of equations nonsingular (the term
does not apply to a system of equations), nor does it make any sense to call a 5 x 7
matrix singular (the matrix is not square).

Example S A singular matrix, Archetype A
Example HISAA shows that the coefficient matrix derived from Archetype A, specif-
ically the 3 x 3 matrix,

1 -1 2

2 1 1

A:
11 0

is a singular matrix since there are nontrivial solutions to the homogeneous system

LS(A, 0). A
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Example NM A nonsingular matrix, Archetype B
Example HUSAB shows that the coefficient matrix derived from Archetype B,
specifically the 3 x 3 matrix,

-7 —6 -12
B=1|5 ) 7 ]
1 0 4

is a nonsingular matrix since the homogeneous system, LS(B, 0), has only the trivial
solution. A

Notice that we will not discuss Example HISAD as being a singular or nonsingular
coefficient matrix since the matrix is not square.

The next theorem combines with our main computational technique (row reducing
a matrix) to make it easy to recognize a nonsingular matrix. But first a definition.

Definition IM Identity Matrix
The m x m identity matrix, I,,, is defined by

L i
[IWL]ij:{ ol 1<i,j<m

0 i#j
|
Example IM An identity matrix
The 4 x 4 identity matrix is
10 0 0
I — 01 00
17100 10
0 0 01
A

Notice that an identity matrix is square, and in reduced row-echelon form. So
in particular, if we were to arrive at the identity matrix while bringing a matrix to
reduced row-echelon form, then it would have all of the diagonal entries circled as
leading 1’s.

Theorem NMRRI Nonsingular Matrices Row Reduce to the Identity matrix
Suppose that A is a square matrixz and B is a row-equivalent matriz in reduced
row-echelon form. Then A is nonsingular if and only if B is the identity matrix.

Proof. (<) Suppose B is the identity matrix. When the augmented matrix [A | 0]
is row-reduced, the result is [B| 0] = [I,, | 0]. The number of nonzero rows is equal
to the number of variables in the linear system of equations LS(A4, 0), son = r
and Theorem FVCS gives n — r = 0 free variables. Thus, the homogeneous system
LS(A, 0) has just one solution, which must be the trivial solution. This is exactly
the definition of a nonsingular matrix (Definition NM).

(=) If A is nonsingular, then the homogeneous system £S(A, 0) has a unique
solution, and has no free variables in the description of the solution set. The homo-
geneous system is consistent (Theorem HSC) so Theorem FVCS applies and tells
us there are n — r free variables. Thus, n —r = 0, and so n = r. So B has n pivot
columns among its total of n columns. This is enough to force B to be the n x n
identity matrix I,, (see Exercise NM.T12). [ |

Notice that since this theorem is an equivalence it will always allow us to determine
if a matrix is either nonsingular or singular. Here are two examples of this, continuing
our study of Archetype A and Archetype B.

Example SRR Singular matrix, row-reduced



§NM BEEZER: A FIRST COURSE IN LINEAR ALGEBRA 54

The coefficient matrix for Archetype A is
1 -1 2
2 1 1
1 1 0
which when row-reduced becomes the row-equivalent matrix

1] o 1

B=|o [1] —1

0 0 O

Since this matrix is not the 3 x 3 identity matrix, Theorem NMRRI tells us that
A is a singular matrix. A

A—

Example NSR Nonsingular matrix, row-reduced
The coefficient matrix for Archetype B is

-7 -6 -—12
A=1|5 5) 7 ]
1 0 4

which when row-reduced becomes the row-equivalent matrix

0 0
B=10 0
0 0
Since this matrix is the 3 x 3 identity matrix, Theorem NMRRI tells us that A
is a nonsingular matrix. A

Subsection NSNM
Null Space of a Nonsingular Matrix

Nonsingular matrices and their null spaces are intimately related, as the next two
examples illustrate.

Example NSS Null space of a singular matrix
Given the coefficient matrix from Archetype A,

1 -1 2
2 1 1]
1 1 0

the null space is the set of solutions to the homogeneous system of equations LS(A, 0)
has a solution set and null space constructed in Example HISAA as

N(A) = { [_x?] x3 € (C}
T3

Example NSNM Null space of a nonsingular matrix
Given the coefficient matrix from Archetype B,

A:

-7 -6 -12
A=1|5 5 7
1 0 4

the solution set to the homogeneous system LS(A, 0) is constructed in Example
HUSAB and contains only the trivial solution, so the null space has only a single

element,
0
o= {}
0
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These two examples illustrate the next theorem, which is another equivalence.

Theorem NMTNS Nonsingular Matrices have Trivial Null Spaces
Suppose that A is a square matriz. Then A is nonsingular if and only if the null
space of A, N'(A), contains only the zero vector, i.e. N(A) = {0}.

Proof. The null space of a square matriz, A, is equal to the set of solutions to the
homogeneous system, LS(A, 0). A matriz is nonsingular if and only if the set of
solutions to the homogeneous system, LS(A, 0), has only a trivial solution. These
two observations may be chained together to construct the two proofs necessary for
each half of this theorem. |

The next theorem pulls a lot of big ideas together. Theorem NMUS tells us that
we can learn much about solutions to a system of linear equations with a square
coefficient matrix by just examining a similar homogeneous system.

Theorem NMUS Nonsingular Matrices and Unique Solutions
Suppose that A is a square matriz. A is a nonsingular matriz if and only if the
system LS(A, b) has a unique solution for every choice of the constant vector b.

Proof. (<) The hypothesis for this half of the proof is that the system LS(A, b)
has a unique solution for every choice of the constant vector b. We will make a very
specific choice for b: b = 0. Then we know that the system £S(A, 0) has a unique
solution. But this is precisely the definition of what it means for A to be nonsingular
(Definition NM). That almost seems too easy! Notice that we have not used the full
power of our hypothesis, but there is nothing that says we must use a hypothesis to
its fullest.

(=) We assume that A is nonsingular of size n X n, so we know there is a
sequence of row operations that will convert A into the identity matrix I,, (Theorem
NMRRI). Form the augmented matrix A’ = [A| b] and apply this same sequence
of row operations to A’. The result will be the matrix B’ = [I,, | c], which is in
reduced row-echelon form with » = n. Then the augmented matrix B’ represents the
(extremely simple) system of equations z; = [c];, 1 < i < n. The vector c is clearly a
solution, so the system is consistent (Definition CS). With a consistent system, we
use Theorem FVCS to count free variables. We find that there are n —r=n—n =20
free variables, and so we therefore know that the solution is unique. (This half of
the proof was suggested by Asa Scherer.) |

This theorem helps to explain part of our interest in nonsingular matrices. If a
matrix is nonsingular, then no matter what vector of constants we pair it with, using
the matrix as the coefficient matrix will always yield a linear system of equations
with a solution, and the solution is unique. To determine if a matrix has this property
(non-singularity) it is enough to just solve one linear system, the homogeneous system
with the matrix as coeflicient matrix and the zero vector as the vector of constants
(or any other vector of constants, see Exercise MM.T10).

Formulating the negation of the second part of this theorem is a good exercise.
A singular matrix has the property that for some value of the vector b, the system
LS (A, b) does not have a unique solution (which means that it has no solution or
infinitely many solutions). We will be able to say more about this case later (see the
discussion following Theorem PSPHS).

Square matrices that are nonsingular have a long list of interesting properties,
which we will start to catalog in the following, recurring, theorem. Of course, singular
matrices will then have all of the opposite properties. The following theorem is a list
of equivalences.

We want to understand just what is involved with understanding and proving
a theorem that says several conditions are equivalent. So have a look at Proof
Technique ME before studying the first in this series of theorems.
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Theorem NME1 Nonsingular Matrix Equivalences, Round 1
Suppose that A is a square matriz. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matriz.
3. The null space of A contains only the zero vector, N(A) = {0}.

4. The linear system LS(A, b) has a unique solution for every possible choice of
b.

Proof. That A is nonsingular is equivalent to each of the subsequent statements by,
in turn, Theorem NMRRI, Theorem NMTNS and Theorem NMUS. So the statement
of this theorem is just a convenient way to organize all these results. |

Finally, you may have wondered why we refer to a matrix as nonsingular when it
creates systems of equations with single solutions (Theorem NMUS)! I’ve wondered
the same thing. We’ll have an opportunity to address this when we get to Theorem
SMZD. Can you wait that long?

Reading Questions

1. What is the definition of a nonsingular matrix?
2. What is the easiest way to recognize if a square matrix is nonsingular or not?

3. Suppose we have a system of equations and its coefficient matrix is nonsingular. What
can you say about the solution set for this system?

Exercises

In Exercises C30—-C33 determine if the matrix is nonsingular or singular. Give reasons for
your answer.

csof
-3 1 2 8
2 0 3 4
1 2 7 —4
5 -1 2 0
c31f
2 3 1 4
1 1 1 0
-1 2 3 5
1 2 1 3
c32f
9 3 2 4
5 -6 1 3
4 1 3 =5
C33!

—
|
o
|
o
W o W
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C40 Each of the archetypes below is a system of equations with a square coefficient
matrix, or is itself a square matrix. Determine if these matrices are nonsingular, or singular.
Comment on the null space of each matrix.

Archetype A, Archetype B, Archetype F, Archetype K, Archetype L
C50"  Find the null space of the matrix E below.

2 1 -1 -9

2 2 -6 —6
E=171 2 _8 o
12 —12 12

M30" Let A be the coefficient matrix of the system of equations below. Is A nonsingular
or singular? Explain what you could infer about the solution set for the system based only
on what you have learned about A being singular or nonsingular.

—x1 + 512 = —8
—2x1 + dxo + dx3 + 224 = 9
—3x1 —22+ 33+ 24 =3
Tx1 + 6x2 + 523 + 4 = 30

For Exercises M51-Mb2 say as much as possible about each system’s solution set. Be
sure to make it clear which theorems you are using to reach your conclusions.

M51" 6 equations in 6 variables, singular coefficient matrix.

M527 A system with a nonsingular coefficient matrix, not homogeneous.

T10" Suppose that A is a square matrix, and B is a matrix in reduced row-echelon form
that is row-equivalent to A. Prove that if A is singular, then the last row of B is a zero row.

T12 Suppose that A is a square matrix. Using the definition of reduced row-echelon form
(Definition RREF) carefully, give a proof of the following equivalence: Every column of A
is a pivot column if and only if A is the identity matrix (Definition IM).

T30" Suppose that A is a nonsingular matrix and A is row-equivalent to the matrix B.
Prove that B is nonsingular.

T31" Suppose that A is a square matrix of size n x n and that we know there is a single
vector b € C™ such that the system L£S(A, b) has a unique solution. Prove that A is a
nonsingular matrix. (Notice that this is very similar to Theorem NMUS, but is not exactly
the same.)

T90" Provide an alternative for the second half of the proof of Theorem NMUS, without
appealing to properties of the reduced row-echelon form of the coefficient matrix. In other
words, prove that if A is nonsingular, then £LS(A, b) has a unique solution for every choice
of the constant vector b. Construct this proof without using Theorem REMEF or Theorem
RREFU.



Chapter V
Vectors

We have worked extensively in the last chapter with matrices, and some with vectors.
In this chapter we will develop the properties of vectors, while preparing to study
vector spaces (Chapter VS). Initially we will depart from our study of systems
of linear equations, but in Section LC we will forge a connection between linear
combinations and systems of linear equations in Theorem SLSLC. This connection
will allow us to understand systems of linear equations at a higher level, while
consequently discussing them less frequently.

Section VO
Vector Operations

In this section we define some new operations involving vectors, and collect some
basic properties of these operations. Begin by recalling our definition of a column
vector as an ordered list of complex numbers, written vertically (Definition CV).
The collection of all possible vectors of a fixed size is a commonly used set, so we
start with its definition.

Subsection CV
Column Vectors

Definition VSCV Vector Space of Column Vectors
The vector space C™ is the set of all column vectors (Definition CV) of size m with
entries from the set of complex numbers, C. ]

When a set similar to this is defined using only column vectors where all the
entries are from the real numbers, it is written as R™ and is known as Euclidean
m-space.

The term “vector” is used in a variety of different ways. We have defined it as
an ordered list written vertically. It could simply be an ordered list of numbers, and
written as (2, 3, —1, 6). Or it could be interpreted as a point in m dimensions, such
as (3, 4, —2) representing a point in three dimensions relative to z, y and z axes.
With an interpretation as a point, we can construct an arrow from the origin to the
point which is consistent with the notion that a vector has direction and magnitude.

All of these ideas can be shown to be related and equivalent, so keep that in mind
as you connect the ideas of this course with ideas from other disciplines. For now,
we’ll stick with the idea that a vector is just a list of numbers, in some particular
order.
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Subsection VEASM
Vector Equality, Addition, Scalar Multiplication

We start our study of this set by first defining what it means for two vectors to be
the same.

Definition CVE Column Vector Equality
Suppose that u, v.€ C™. Then u and v are equal, written u = v if

[u]; = [v], 1<i<m
O

Now this may seem like a silly (or even stupid) thing to say so carefully. Of
course two vectors are equal if they are equal for each corresponding entry! Well,
this is not as silly as it appears. We will see a few occasions later where the obvious
definition is not the right one. And besides, in doing mathematics we need to be very
careful about making all the necessary definitions and making them unambiguous.
And we’ve done that here.

Notice now that the symbol “=” is now doing triple-duty. We know from our
earlier education what it means for two numbers (real or complex) to be equal, and
we take this for granted. In Definition SE we defined what it meant for two sets
to be equal. Now we have defined what it means for two vectors to be equal, and
that definition builds on our definition for when two numbers are equal when we
use the condition u; = v; for all 1 <4 < m. So think carefully about your objects
when you see an equal sign and think about just which notion of equality you have
encountered. This will be especially important when you are asked to construct
proofs whose conclusion states that two objects are equal.

OK, let’s do an example of vector equality that begins to hint at the utility of
this definition.

9

Example VESE Vector equality for a system of equations
Consider the system of linear equations in Archetype B,
—Tx1 — 6xo — 1223 = —33
Sx1 + dxo + Txs = 24
T, +4r3 =25
Note the use of three equals signs — each indicates an equality of numbers (the

linear expressions are numbers when we evaluate them with fixed values of the
variable quantities). Now write the vector equality,

—7$1 — 6.232 — 121‘3 —33
l 5x1 + dxo + Tx3 ] = [24] .
I —+ 4333 5
By Definition CVE, this single equality (of two column vectors) translates into three
simultaneous equalities of numbers that form the system of equations. So with this
new notion of vector equality we can become less reliant on referring to systems of

simultaneous equations. There’s more to vector equality than just this, but this is a
good example for starters and we will develop it further. AN

We will now define two operations on the set C™. By this we mean well-defined
procedures that somehow convert vectors into other vectors. Here are two of the
most basic definitions of the entire course.

Definition CVA Column Vector Addition
Suppose that u, v € C™. The sum of u and v is the vector u + v defined by

[u+v], =[u, +[v]; I1<i<m
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So vector addition takes two vectors of the same size and combines them (in a
natural way!) to create a new vector of the same size. Notice that this definition
is required, even if we agree that this is the obvious, right, natural or correct way
to do it. Notice too that the symbol ‘4’ is being recycled. We all know how to add
numbers, but now we have the same symbol extended to double-duty and we use
it to indicate how to add two new objects, vectors. And this definition of our new
meaning is built on our previous meaning of addition via the expressions u; + v;.
Think about your objects, especially when doing proofs. Vector addition is easy,
here’s an example from C*.

Example VA Addition of two vectors in C*

If
2 1
-3 R
U=y V=12
2 7
then
2 —1 24 (—1) 1
-3 50 | =345 | |2
Utv=1y41Tl2| 7| a+2 | = |s
2 7 24 (=7) -5

A

Our second operation takes two objects of different types, specifically a number
and a vector, and combines them to create another vector. In this context we call a
number a scalar in order to emphasize that it is not a vector.

Definition CVSM Column Vector Scalar Multiplication
Suppose u € C™ and « € C, then the scalar multiple of u by « is the vector au
defined by

= au], 1<i<m

[l i

K2

O

Notice that we are doing a kind of multiplication here, but we are defining a new
type, perhaps in what appears to be a natural way. We use juxtaposition (smashing
two symbols together side-by-side) to denote this operation rather than using a
symbol like we did with vector addition. So this can be another source of confusion.
When two symbols are next to each other, are we doing regular old multiplication, the
kind we’ve done for years, or are we doing scalar vector multiplication, the operation
we just defined? Think about your objects — if the first object is a scalar, and the
second is a vector, then it must be that we are doing our new operation, and the
result of this operation will be another vector.

Notice how consistency in notation can be an aid here. If we write scalars as
lower case Greek letters from the start of the alphabet (such as «, 8, ...) and write
vectors in bold Latin letters from the end of the alphabet (u, v, ...), then we have
some hints about what type of objects we are working with. This can be a blessing
and a curse, since when we go read another book about linear algebra, or read an
application in another discipline (physics, economics, ...) the types of notation
employed may be very different and hence unfamiliar.

Again, computationally, vector scalar multiplication is very easy.

Example CVSM Scalar multiplication in C°
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If
3
1
u= (-2
4
-1
and a = 6, then
3 6(3) 18
1 6(1) 6
cu=6|-2| = |6(-2)| = |—-12
4 6(4) 24
-1 6(—1) —6

Subsection VSP
Vector Space Properties

With definitions of vector addition and scalar multiplication we can state, and prove,
several properties of each operation, and some properties that involve their interplay.
We now collect ten of them here for later reference.

Theorem VSPCV Vector Space Properties of Column Vectors
Suppose that C™ is the set of column vectors of size m (Definition VSCV) with
addition and scalar multiplication as defined in Definition CVA and Definition
CVSM. Then

e ACC Additive Closure, Column Vectors

Ifu, veC™ thenu+veCm.

e SCC Scalar Closure, Column Vectors
If a € C and u € C™, then au € C™.

e CC Commutativity, Column Vectors

Ifu,veC™ thenu+v=v+u.
e AAC Additive Associativity, Column Vectors

Ifu,v, we C”, thenu+ (v+w)=(u+v)+w.
e 7ZC Zero Vector, Column Vectors

There is a vector, 0, called the zero vector, such that u+0 = u for allu € C™.
e AIC Additive Inverses, Column Vectors

Ifu € C™, then there exists a vector —u € C™ so that u+ (—u) = 0.
e SMAC Scalar Multiplication Associativity, Column Vectors

If a, B € C and u € C™, then a(fu) = (af)u.
e DVAC Distributivity across Vector Addition, Column Vectors

Ifa € C andu, v e C™, then a(u+v) =au+ av.

e DSAC Distributivity across Scalar Addition, Column Vectors
If a, 8 € C and u € C™, then («+ f)u = au + Su.

e OC One, Column Vectors
IfueC™, then lu =u.
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Proof. While some of these properties seem very obvious, they all require proof.
However, the proofs are not very interesting, and border on tedious. We’ll prove one
version of distributivity very carefully, and you can test your proof-building skills on
some of the others. We need to establish an equality, so we will do so by beginning
with one side of the equality, apply various definitions and theorems (listed to the
right of each step) to massage the expression from the left into the expression on
the right. Here we go with a proof of Property DSAC.
For 1 <i<m,

[(a+ B)u]; = (a+ B) [u]; Definition CVSM
= afu]; + B[u; Property DCN

= [au]; + [fu], Definition CVSM
= [ou + Bul; Definition CVA

Since the individual components of the vectors (« + f)u and au + Su are equal
for all 7, 1 < i < m, Definition CVE tells us the vectors are equal. |

2

Many of the conclusions of our theorems can be characterized as “identities,
especially when we are establishing basic properties of operations such as those in
this section. Most of the properties listed in Theorem VSPCV are examples. So
some advice about the style we use for proving identities is appropriate right now.
Have a look at Proof Technique PI.

Be careful with the notion of the vector —u. This is a vector that we add to u
so that the result is the particular vector 0. This is basically a property of vector
addition. It happens that we can compute —u using the other operation, scalar
multiplication. We can prove this directly by writing that

[-u], = —[u]; = (1) [u]; = [(-1)u];
We will see later how to derive this property as a consequence of several of the ten
properties listed in Theorem VSPCV.

Similarly, we will often write something you would immediately recognize as
“vector subtraction.” This could be placed on a firm theoretical foundation — as you
can do yourself with Exercise VO.T30.

A final note. Property AAC implies that we do not have to be careful about how
we “parenthesize” the addition of vectors. In other words, there is nothing to be
gained by writing (u + v) + (w + (x +y)) rather than u+ v + w + x + y, since we
get the same result no matter which order we choose to perform the four additions.
So we won’t be careful about using parentheses this way.

Reading Questions

1. Where have you seen vectors used before in other courses? How were they different?
2. In words, when are two vectors equal?
3. Perform the following computation with vector operations

1 7
25| +(-3) |6
0 5
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Exercises
C10"  Compute

2 1 ~1
-3 2 3
44| +(=2)|-5|+]0
1 2 1
0 4 2

C11"  Solve the given vector equation for z, or explain why no solution exists:

1 [2 11
3l2]+4]0| =16
—1 Ks 17

C12"  Solve the given vector equation for a, or explain why no solution exists:

(1] (3 -1
al2|+44f =10
-1 2 4

C13"  Solve the given vector equation for a, or explain why no solution exists:

3 6 0
al2 |+ |(1]=|-3
-2 2 6

C14" Find o and $ that solve the vector equation.

-+t

C15" Find a and S that solve the vector equation.

[ ol =[5

T05" Provide reasons (mostly vector space properties) as justification for each of the
seven steps of the following proof.

Theorem For any vectors u, v, w € C™, if u+ v =u+ w, then v=w.

Proof: Let u, v, w € C™, and suppose u+v =u+ w.

v=0+v
=(—u+u)+v
=-u+ (u+v)
=-u+ (u+w)
=(—u+u)+w
=0+w
=w

T06" Provide reasons (mostly vector space properties) as justification for each of the six
steps of the following proof.

Theorem For any vector u € C™, Ou = 0.

Proof: Let u e C™.

0 =0u + (—0Ou)
= (0+0)u + (—0u)
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= (Ou + Ou) + (—0Ou)
= Ou + (Ou + (—0u))
=0u+0

= (Ou

T07" Provide reasons (mostly vector space properties) as justification for each of the six
steps of the following proof.

Theorem For any scalar ¢, cO = 0.

Proof: Let ¢ be an arbitrary scalar.

0 = c0 + (—c0)
=¢(0+0) + (—c0)
= (c0 + ¢0) 4 (—c0)
=¢c0+ (c0 + (—c0))
=c0+0
=c0

T13" Prove Property CC of Theorem VSPCV. Write your proof in the style of the proof
of Property DSAC given in this section.

T17 Prove Property SMAC of Theorem VSPCV. Write your proof in the style of the
proof of Property DSAC given in this section.

T18 Prove Property DVAC of Theorem VSPCV. Write your proof in the style of the
proof of Property DSAC given in this section.

Exercises T30, T31 and T32 are about making a careful definition of “vector subtraction”.

T30 Suppose u and v are two vectors in C™. Define a new operation, called “sub-
traction,” as the new vector denoted u — v and defined by

[ufvh:[u]if[v]i 1<i<m

Prove that we can express the subtraction of two vectors in terms of our two basic
operations. More precisely, prove that u — v = u+ (—1)v. So in a sense, subtraction is
not something new and different, but is just a convenience. Mimic the style of similar
proofs in this section.

T31 Prove, by using counterexamples, that vector subtraction is not commutative
and not associative.

T32 Prove that vector subtraction obeys a distributive property. Specifically, prove
that a(u —v) = au — av.

Can you give two different proofs? Base one on the definition given in Exercise VO.T30
and base the other on the equivalent formulation proved in Exercise VO.T30.



Section LC
Linear Combinations

In Section VO we defined vector addition and scalar multiplication. These two
operations combine nicely to give us a construction known as a linear combination,
a construct that we will work with throughout this course.

Subsection LC
Linear Combinations

Definition LCCV Linear Combination of Column Vectors
Given n vectors uy, us, us, ..., u, from C™ and n scalars a1, as, as, ..., a,, their
linear combination is the vector

aiug + agug +agus + - - - + axuy,
O

So this definition takes an equal number of scalars and vectors, combines them
using our two new operations (scalar multiplication and vector addition) and creates
a single brand-new vector, of the same size as the original vectors. When a definition
or theorem employs a linear combination, think about the nature of the objects that
go into its creation (lists of scalars and vectors), and the type of object that results
(a single vector). Computationally, a linear combination is pretty easy.

Example TLC Two linear combinations in C8
Suppose that

a; =1 oy = —4 az =2 oy = —1
and
2 6 ] -5 3
4 3 2 2
-3 0 1 -5
u; = 1 Ug = _9 us = 1 uy = 7
2 1 -3 1
9 4 | 0 3
then their linear combination is
[ 2 6 ) 3
4 3 2
-3 0 1 )
ajuy +oouz +azug +agug = (1) | 7| +(=4) | 5| +@) | | [+ (D | 4
2 1 -3 1
| 9 4 0 | 3
2 —24 —10 -3 —35]
4 —12 4 -2 —6
-3 0 2 5 4
Sl s T2 T|-7 7|4
2 —4 —6 -1 -9
9 —16 0 -3 —10]

A different linear combination, of the same set of vectors, can be formed with
different scalars. Take

pr=3 B2 =0 B3 =75 Ba=—-1
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and form the linear combination

2 6 -5 3
1 3 2 2
-3 0 1 -5
piuy + Bauz + Bzus + faiug = (3) 1 + (0) —9 + (5) 1 + (_1) 7
2 1 -3 1
9 1 0 3
6 0] [-25]1 [-3] [-22
120 |0 10 = 20
—9] |0 5 5 1
Sl Tlol Tl | T|-7|T |1
6 o |- [-1| [-10
27| [0 0 -3 24

Notice how we could keep our set of vectors fixed, and use different sets of scalars
to construct different vectors. You might build a few new linear combinations of
uj, Ug, ug, uy right now. We’ll be right here when you get back. What vectors were
you able to create? Do you think you could create the vector

13
15
)
—-17
2
25

with a “suitable” choice of four scalars? Do you think you could create any possible
vector from C® by choosing the proper scalars? These last two questions are very
fundamental, and time spent considering them now will prove beneficial later. A

W =

Our next two examples are key ones, and a discussion about decompositions is
timely. Have a look at Proof Technique DC before studying the next two examples.

Example ABLC Archetype B as a linear combination

In this example we will rewrite Archetype B in the language of vectors, vector
equality and linear combinations. In Example VESE we wrote the system of m = 3
equations as the vector equality

—7x1 — 619 — 1223 [—33
5x1 + dxo + Txs = |24
T + 4zs )

Now we will bust up the linear expressions on the left, first using vector addition,

—7],‘1 —6.132 —1233‘3_ —33
5xq + | bxo | + Txs3 = 24
X Ol‘g 4%3 | 5

Now we can rewrite each of these n = 3 vectors as a scalar multiple of a fixed
vector, where the scalar is one of the unknown variables, converting the left-hand
side into a linear combination

=7 —6 —12 —33
1| 5 | +x2| 5| +x3 7]:[24]
1 0 4 5

We can now interpret the problem of solving the system of equations as determin-
ing values for the scalar multiples that make the vector equation true. In the analysis
of Archetype B, we were able to determine that it had only one solution. A quick
way to see this is to row-reduce the coefficient matrix to the 3 x 3 identity matrix
and apply Theorem NMRRI to determine that the coefficient matrix is nonsingular.
Then Theorem NMUS tells us that the system of equations has a unique solution.



sLC BEEZER: A FIRST COURSE IN LINEAR ALGEBRA 67

This solution is
Tr1 = -3 To = 5 T3 = 2

So, in the context of this example, we can express the fact that these values of
the variables are a solution by writing the linear combination,

-7 —6 —12 -33
(=3)|5|+GB)|d5|+@2)]| 7 ] = l24]
1 0 4 5

Furthermore, these are the only three scalars that will accomplish this equality,
since they come from a unique solution.

Notice how the three vectors in this example are the columns of the coefficient
matrix of the system of equations. This is our first hint of the important interplay
between the vectors that form the columns of a matrix, and the matrix itself. A

With any discussion of Archetype A or Archetype B we should be sure to contrast
with the other.

Example AALC Archetype A as a linear combination
As a vector equality, Archetype A can be written as

-

Now bust up the linear expressions on the left, first using vector addition,

r1 — T2 +2(E3
201 + x9 + 3
1+ o

T —X9 213 1
221 4+ | 2 |+ |23 | = |8
T1 To Ox3 5

Rewrite each of these n = 3 vectors as a scalar multiple of a fixed vector, where
the scalar is one of the unknown variables, converting the left-hand side into a linear
combination

1 -1 2 1
X1 2 +$2 1 +.7,‘3 1] = [8
1 1 0 5

Row-reducing the augmented matrix for Archetype A leads to the conclusion
that the system is consistent and has free variables, hence infinitely many solutions.
So for example, the two solutions

T =2 To =3 T3 =
$1:3 x2:2 1‘3:0

can be used together to say that,

1 -1 2 17 1 ~1 27
@21 +@) | 1]+ 11 = [8 =3)|2|+@ 1|+ ]1
11 1 0 5] 1 1 0]

Ignore the middle of this equation, and move all the terms to the left-hand side,

17 -1 2] M1 -1 2 [0
(2) [2 +@) | L [+@) 1] +(=3)|2]|+(=2)| 1 | +(=0) H = 0]
1] 1 10} |1 1 0 L0

Regrouping gives

11+

-l

Notice that these three vectors are the columns of the coefficient matrix for the
system of equations in Archetype A. This equality says there is a linear combination
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of those columns that equals the vector of all zeros. Give it some thought, but this
says that

$1=—1 .2?221 1‘3:1

is a nontrivial solution to the homogeneous system of equations with the coefficient
matrix for the original system in Archetype A. In particular, this demonstrates that
this coefficient matrix is singular. A

There’s a lot going on in the last two examples. Come back to them in a while and
make some connections with the intervening material. For now, we will summarize
and explain some of this behavior with a theorem.

Theorem SLSLC Solutions to Linear Systems are Linear Combinations

Denote the columns of the m x n matrix A as the vectors Ay, Ao, As, ..., A,.
Then x € Cn is a solution to the linear system of equations LS(A, b) if and only if
b equals the linear combination of the columns of A formed with the entries of x,

(xl, Ar+ [x]; Ap + X3 As + -+ [x],, Ap =D

Proof. The proof of this theorem is as much about a change in notation as it is
about making logical deductions. Write the system of equations LS(A4, b) as

a11%1 + a12T2 + a13T3 + - + A1pTy = by
a21%1 + A22T2 + a23T3 + - -+ + A2pTy = b2

a3121 + azaT2 + az3T3 + -+ azpTy = b3

Am1T1 + AGm222 + Am3T3 + - + AmnTy = bm

Notice then that the entry of the coefficient matrix A in row ¢ and column j has
two names: a;; as the coefficient of ; in equation 7 of the system and [A;], as the
i-th entry of the column vector in column j of the coefficient matrix A. Likewise,
entry ¢ of b has two names: b; from the linear system and [b], as an entry of a
vector. Our theorem is an equivalence (Proof Technique E) so we need to prove both
“directions.”

(<) Suppose we have the vector equality between b and the linear combination
of the columns of A. Then for 1 <i < m,

b; = [b]; Definition CV
([x]; Ay + [x], Ag + [x]; Az + - [ ] Anl, Hypothesis
= [[x]; Aql; + [[x], Az, + [[x]5 A3] -+ [[x],, An], Definition CVA
= [x], [A1]; + [x], [Ag]; + [x]5 [As]; + -+ + [x],, [A,]; Definition CVSM
= [x]; ai1 + [x]5 @iz + [X]5 @iz + - - + [x ]n Qin Definition CV
= ai1 [x]; + @iz [x]y + a3 [x]3 + -+ ain [x],, Property CMCN

This says that the entries of x form a solution to equation 7 of LS(A, b) for all
1 <i < m, in other words, x is a solution to LS(A4, b).

(=) Suppose now that x is a solution to the linear system L£LS(A, b). Then for
all 1 <4 <m,

[b]; = b; Definition CV
= a1 [x]; + ai2 [X]y + a3 [X]5 + - + ain [X],, Hypothesis
= [x]; ai1 + [x]y ai2 + [X]5 a3 + - + [X],, ain Property CMCN
=[x, [Aa]; + [x]5 [A2]; + x5 [As]; + -+ + [x],, [An];  Definition CV
= [[x]; A1], + [[x], Ao], + [[x]5 As], +--- +[[x], Apn], Definition CVSM
=

[ 7
(x]; A1+ [x], Ag + [x]; As + - + [x],, Ayl Definition CVA

n (3
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Since the components of b and the linear combination of the columns of A agree for
all 1 <14 < m, Definition CVE tells us that the vectors are equal. [ |

In other words, this theorem tells us that solutions to systems of equations are
linear combinations of the n column vectors of the coefficient matrix (A ;) which
yield the constant vector b. Or said another way, a solution to a system of equations
LS(A, b) is an answer to the question “How can I form the vector b as a linear
combination of the columns of A?” Look through the archetypes that are systems
of equations and examine a few of the advertised solutions. In each case use the
solution to form a linear combination of the columns of the coefficient matrix and
verify that the result equals the constant vector (see Exercise LC.C21).

Subsection VFSS
Vector Form of Solution Sets

We have written solutions to systems of equations as column vectors. For example
Archetype B has the solution 1 = —3, o = 5, 3 = 2 which we now write as

<[}

Now, we will use column vectors and linear combinations to express all of the
solutions to a linear system of equations in a compact and understandable way.
First, here’s two examples that will motivate our next theorem. This is a valuable
technique, almost the equal of row-reducing a matrix, so be sure you get comfortable
with it over the course of this section.

Example VFSAD Vector form of solutions for Archetype D
Archetype D is a linear system of 3 equations in 4 variables. Row-reducing the

augmented matrix yields
0 3 -2 4
0 1 =30
0 0 0

0 0

and we see r = 2 nonzero rows. Also, D = {1, 2} so the dependent variables are then
z1 and zo. F' = {3, 4, 5} so the two free variables are x5 and x,. We will express a
generic solution for the system by two slightly different methods, though both arrive
at the same conclusion.

First, we will decompose (Proof Technique DC) a solution vector. Rearranging
each equation represented in the row-reduced form of the augmented matrix by
solving for the dependent variable in each row yields the vector equality,

T 4 — 33+ 214
To| —x3 + 3584
r3| x3

T4 T4

Now we will use the definitions of column vector addition and scalar multiplication
to express this vector as a linear combination,

(4] —3.2?3 2.134

= 8 + _;;3 + 3‘84 Definition CVA
_0_ 0 Ty
(47 -3 2
0 -1 3 "

= 1o taz | |+ re 0 Definition CVSM
10] 0 1
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We will develop the same linear combination a bit quicker, using three steps.
While the method above is instructive, the method below will be our preferred
approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination
of n — r vectors, using the free variables as the scalars.

I

x
x
Tyq

[

+ x3 + x4

w

Step 2. Use 0’s and 1’s to ensure equality for the entries of the vectors with
indices in F' (corresponding to the free variables).

xr
T2 | _

zs| = o] T 1| T g
Xy 0 0 1

Step 3. For each dependent variable, use the augmented matrix to formulate an
equation expressing the dependent variable as a constant plus multiples of the free
variables. Convert this equation into entries of the vectors that ensure equality for
each dependent variable, one at a time.

[y

E28 (47 [—37 27
— A _ _ | T2

1 =4 —3x3+ 214 = X = s 0 + 3 1 + x4 0
1 T4 | _0_ L 0 | _1_

E2 (47 [—37 27

0 -1 3

$2:O—1$3+3[L‘4 = X = ii = 0 +1'3 1 +ZC4 O
| T4 | 10] L 0 | 1]

This final form of a typical solution is especially pleasing and useful. For example,
we can build solutions quickly by choosing values for our free variables, and then
compute a linear combination. Such as

@] T4 -3 2 ~12]
@ 0 -1 3 ~17
r3 = 27 Ty = -5 = X = xz = 0 =+ (2) 1 =+ (—5) 0 = 9
e L0 0 1 -5
or,
©] 4 -3 21 [7]
0 -1 3| _ |8
z3=1,24=3 = x= 2=l +O T +3) o] =1
za) [0 0 1 |3

You’ll find the second solution listed in the write-up for Archetype D, and you
might check the first solution by substituting it back into the original equations.

While this form is useful for quickly creating solutions, it’s even better because

it tells us ezxactly what every solution looks like. We know the solution set is infinite,
-3
which is pretty big, but now we can say that a solution is some multiple of _11

0
2

4
plus a multiple of g plus the fixed vector 8 . Period. So it only takes us three
0
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vectors to describe the entire infinite solution set, provided we also agree on how to
combine the three vectors into a linear combination. A

This is such an important and fundamental technique, we’ll do another example.

Example VFS Vector form of solutions
Consider a linear system of m = 5 equations in n = 7 variables, having the augmented
matrix A.

2 1 -1 -2 21 5 21
1 1 -3 1 11 2 -5
A=|1 2 -8 5 1 1 —6 —15
3 3 -9 3 65 2 -2
-2 -1 1 2 1 1 -9 -30
Row-reducing we obtain the matrix
0 2 -3 0 0 9 15
0 -5 4 0 0 -8 —10
B=10 0 0 0 0 -6 11
0 0 0 0 0 7 21
0 0 0 0 0 0 0 0

and we see r = 4 nonzero rows. Also, D = {1, 2, 5, 6} so the dependent variables are
then x4, 22, x5, and xg. F = {3, 4, 7, 8} so the n — r = 3 free variables are x3, 24
and x7. We will express a generic solution for the system by two different methods:
both a decomposition and a construction.

First, we will decompose (Proof Technique DC) a solution vector. Rearranging
each equation represented in the row-reduced form of the augmented matrix by
solving for the dependent variable in each row yields the vector equality,

T _15—2.7334—3334—9{137—
To —10 + bxs — 4x4 + 8x7
T3 T3

Ty = Ty

T5 11 + 627

Tg —21 — 7.’1)7

_x’?_ L :I:7 -

Now we will use the definitions of column vector addition and scalar multiplication
to decompose this generic solution vector as a linear combination,

[ 15 ] [—225] [ 3z, [—92;]
—10 5.’L‘3 —4$4 81‘7
0 T3 0 0
= 0 | + 0 + | x4 + 0 Definition CVA
11 0 0 67
—-21 0 0 —Txr
| 0 ] | 0 | | 0 | | z7 |
[ 15 ] [—2] (37 [—9]
—10 5 —4 8
0 1 0 0
=10 | +23| 0| +x4| 1 |+a7|0 Definition CVSM
11 0 0 6
—-21 0 0 -7
| 0 | | 0 ] | 0 ] | 1]

We will now develop the same linear combination a bit quicker, using three steps.
While the method above is instructive, the method below will be our preferred
approach.

Step 1. Write the vector of variables as a fixed vector, plus a linear combination
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of n — r vectors, using the free variables as the scalars.

x1
Z2
z3
X= |24 = + x3 + x4 + x7
Ts
Ze
X7

Step 2. Use 0’s and 1’s to ensure equality for the entries of the vectors with
indices in F' (corresponding to the free variables).

Z1
T2
zs3
X = |T4| =
Ts
Ze
T7 0 0 0 1

Step 3. For each dependent variable, use the augmented matrix to formulate an
equation expressing the dependent variable as a constant plus multiples of the free
variables. Convert this equation into entries of the vectors that ensure equality for
each dependent variable, one at a time.

o O

+x3 |0 +x4 |1| +27 |0

1 =15 — 2234+ 324 — 927 =

T1 15 -2 3 -9
T
T3 0 1 0 0
x= |24l =0 4+23| 0| 424 |1| 4270
s
Te
| 27 | | 0| | 0] 10 | 1]
To = —10 4+ bxs — 4dxy + 8x7 =
(1] [ 15 ] [—2] [ 3] [—9]
To —10 ) —4 8
T3 0 1 0 0
x= x4l = 0 | +23| 0| +x4| 1| +27|0
s
Tg
T7 0 0 0 1
r5 =114 627 =
(1] 15 [—2] [ 3] [—9]
To —10 ) —4 8
T3 0 1 0 0
x= x4l =0 | +23| 0| 4+x4| 1| +27|0
T5 11 0 0 6
Tg
T7 0 | 0 0 1]
T =—21—Tx; =
(1] 15 [—2] [ 3] [—9]
To —10 5 —4 8
T3 0 1 0 0
X = |Za| = O + &3 0 —+ Ty 1 —+ X7 0
Ts 11 0 0 6
Tg —21 0 0 -7
| 27 | | 0 ] | 0] | 0 | 1]
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This final form of a typical solution is especially pleasing and useful. For example,
we can build solutions quickly by choosing values for our free variables, and then
compute a linear combination. For example

r3=2,14=—4, 27 =3 =
B [ 15 ] [—2] [ 3] [—9] [—28]
T2 —10 5 —4 8 40
T3 0 1 0 0 2
x=|zg| =0 | +2)|0|+(-4|1[+@B3)|0]|=]|—4
s 11 0 0 6 29
6 —-21 0 0 -7 —42
| 27 | | 0 ] | 0] | 0] | 1] | 3 ]
or perhaps,
r3 =5 x4=2x7=1 =
(2] [ 15 ] [—2] [ 37 [—9] [ 2 7
T2 —10 5) —4 8 15
T3 0 1 0 0 5
x=|zg|l =0 | +G)|O0 |+ |1 |+@D]|O0|=]2
s 11 0 0 6 17
6 —21 0 0 -7 —28
| 27 | | 0 ] | 0] | 0] | 1] | 1 ]
or even,
r3=0,24=0,27=0 =
[21] [ 15 ] [—2] [ 3] [—9] [ 15 ]
Zo —10 5 —4 8 —10
T3 0 1 0 0 0
x=|za| =] 0 [+0)|0|+O |1 [+ |0]|=|0
s 11 0 0 6 11
6 —21 0 0 -7 —21
| 27 | | 0 ] | 0] | 0] | 1] | 0 ]

So we can compactly express all of the solutions to this linear system with just 4
fixed vectors, provided we agree how to combine them in a linear combinations to
create solution vectors.

Suppose you were told that the vector w below was a solution to this system of
equations. Could you turn the problem around and write w as a linear combination
of the four vectors ¢, u, uz, us? (See Exercise LC.M11.)

[100] [ 15 ] -2 3 -9

—75 —10 5 —4 8

7 0 1 0 0

w= |9 c=1|0 u=1,0 u = |1 u3= |0
—37 11 0 0 6
35 —21 0 0 -7

= 0 1 0 0 1

Did you think a few weeks ago that you could so quickly and easily list all the
solutions to a linear system of 5 equations in 7 variables?
We'll now formalize the last two (important) examples as a theorem.

Theorem VFSLS Vector Form of Solutions to Linear Systems

Suppose that [ A | b] is the augmented matriz for a consistent linear system LS(A, b)
of m equations in n variables. Let B be a row-equivalent m x (n + 1) matriz in
reduced row-echelon form. Suppose that B has r nonzero rows, columns without
leading 1’s with indices F = {f1, fa, f3, -+ -, fn—r, n+ 1}, and columns with leading
1’s (pivot columns) having indices D = {d1, da, ds, ..., d.}. Define vectors c, u;,
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1<j<n-—r of sizen by

], = 0 ifieF
" UBlgnyr i€ D, i=dy

1 ifieF,i=f;
[u;], =40 ifieF,i# f; .
—[B]k’fj ifieD,i=dy
Then the set of solutions to the system of equations LS(A, b) is

S = {C+ aju; + agug + agug + - - +an—run—r|ala 02, A3, ..., Op—y € C}

Proof. First, LS(A, b) is equivalent to the linear system of equations that has the
matrix B as its augmented matrix (Theorem REMES), so we need only show that S
is the solution set for the system with B as its augmented matrix. The conclusion of

this theorem is that the solution set is equal to the set S, so we will apply Definition
SE.

We begin by showing that every element of S is indeed a solution to the system.
Let ay, as, as, ..., a,_, be one choice of the scalars used to describe elements of
S. So an arbitrary element of S, which we will consider as a proposed solution is

X =c+ou; +aguy +agug + -+ Qp_pUp—p

When r +1 < £ < m, row £ of the matrix B is a zero row, so the equation
represented by that row is always true, no matter which solution vector we propose.
So concentrate on rows representing equations 1 < ¢ < r. We evaluate equation ¢ of
the system represented by B with the proposed solution vector x and refer to the
value of the left-hand side of the equation as 3y,

Be = [Bly [x]y + [Bly Xy + [Blys [x]3 + - + [B],, [,

Since [B],,, = 0 for all 1 <i <r, except that [B],, = 1, we see that 3, simplifies
to

Be = [xl4, + [Bloy, XIy, + [Blyy, Xlp, + [Bloy, Xl +-+ [Blyy, Xy,
Notice that for 1 <i<n-—r

[X]fi = [C]fi +a [ul]f,i + s [u2]f Tt [ui]f ot ap—y [un—r}fi

=04+ a1(0) + a2(0) + -+ (1) + - - + ap—r(0)
= Oéi
So B¢ simplifies further, and we expand the first term
Be = [x]q, + [Bloy, o1 + [Blyy, o+ [Blyg as + -+ [Blyy,  an—y
= [c+aiu; + aguy +azuz + -+ ap U]y, +
[Bleg, o1+ [Bleg, @z + [Blyy, s+ + [Blyy,_, an—r
= [C]dg +a [ul]dl +az [112](1,Z tas [ui’)]d,z +tootan, [unfr]d[ +
[Bleg, ar + [Blyy, a2 + [Blyg, as + -+ [Blyy, | an—s
= [B]Z,n+1 +
o1 (— [B]Zfl) + az(— [B]éfz) +az(— [B}efg) +o o (= [B]gfnir)‘k
[B]efl ap + [B]£f2 az + [B]£f3 Qg+ -+ [B]an_r Qn—r
= [B]Z,n+1

So B¢ began as the left-hand side of equation ¢ of the system represented by B
and we now know it equals [B], ., the constant term for equation £ of this system.
So the arbitrarily chosen vector from S makes every equation of the system true,
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and therefore is a solution to the system. So all the elements of S are solutions to
the system.

For the second half of the proof, assume that x is a solution vector for the system
having B as its augmented matrix. For convenience and clarity, denote the entries of
x by x;, in other words, x; = [x],. We desire to show that this solution vector is also
an element of the set S. Begin with the observation that a solution vector’s entries
makes equation £ of the system true for all 1 < /¢ < m,

[B}m 1+ [B]e,z T + [B]e,g T3+ -+ [B]Z,n Ln = [B]Z,nJrl

When ¢ < r, the pivot columns of B have zero entries in row £ with the exception
of column dy, which will contain a 1. So for 1 < ¢ < r, equation ¢ simplifies to

Lwg, + [Bly g xp + By, a0 + Bl xps + -+ [Bloy, x5, =Bl

This allows us to write,

[X]d,_; = Zd,

= [B]e,n+1 - [B]z,fl Lfr — [B]e,f2 Ly — [B]z,fg Tfg =0~ [B]Z,fn,r L frr
= [C}de tTn [ul]dZ Ty, [uz]dg Ty [u3]de +otrg, [un—r]de
= [c +zpu +Tpu 034000+ xfnfrun,@d[

This tells us that the entries of the solution vector x corresponding to dependent
variables (indices in D), are equal to those of a vector in the set S. We still need to
check the other entries of the solution vector x corresponding to the free variables
(indices in F) to see if they are equal to the entries of the same vector in the set S.
To this end, suppose ¢ € F' and ¢ = f;. Then

[X]i =T = Tf;
= 0+Ofﬂfl +0$f2 +O£L'f3 + - +0‘Tfj—1 + 1l‘f_7. +Ol‘f].+1 + - +0£L'fn_r
= c]; + x5, [w]; + 2p, o], + 34, [us], + -+ ag, (Wil + - 2y, [unr];
= [C +xpur +xpu2 + 00+ :Efn—run_r}i

So entries of x and c+ x5 uy +xp,us + -+ 2y, U, are equal and therefore

by Definition CVE they are equal vectors. Since ¢, , xy,, ., ..., Ty,_, are scalars,
this shows us that x qualifies for membership in S. So the set S contains all of the
solutions to the system. |

Note that both halves of the proof of Theorem VFSLS indicate that a; = [x]. .
In other words, the arbitrary scalars, «;, in the description of the set S actually have
more meaning — they are the values of the free variables [x] gol<i<n—r So we
will often exploit this observation in our descriptions of solution sets.

Theorem VFSLS formalizes what happened in the three steps of Example VFSAD.
The theorem will be useful in proving other theorems, and it it is useful since it tells
us an exact procedure for simply describing an infinite solution set. We could program
a computer to implement it, once we have the augmented matrix row-reduced and
have checked that the system is consistent. By Knuth’s definition, this completes
our conversion of linear equation solving from art into science. Notice that it even
applies (but is overkill) in the case of a unique solution. However, as a practical
matter, I prefer the three-step process of Example VFSAD when I need to describe
an infinite solution set. So let’s practice some more, but with a bigger example.

Example VFSAI Vector form of solutions for Archetype I
Archetype I is a linear system of m = 4 equations in n = 7 variables. Row-reducing
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the augmented matrix yields

(1] 4 0 0 2 1 -3 4
0 01 o 1 -3 5 2
0 0 0 [1]2 -6 6 1
00 0 0 0 0 0 0

and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 3, 4}
so the r dependent variables are z1, x3, 4. The columns without leading 1’s are
F=1{2,5,6, 7, 8}, so the n —r = 4 free variables are xs, =5, xg, 7.

Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear
combination of n — r = 4 vectors (uj, us, usz, uy), using the free variables as the
scalars.

T1
T2
z3
X = |x4| = + 2o + x5 + xg + x7
Ts
Te
T

Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corre-
sponding entry of the vectors. Take note of the pattern of 0’s and 1’s at this stage,
because this is the best look you’ll have at it. We’ll state an important theorem in
the next section and the proof will essentially rely on this observation.

] o _ - - oo
To 0 1 0 0 0
z3

X= |24 = + 22 + x5 + g + x7
s 0 0 1 0 0
g 0 0 0 1 0
Ezd 10 u 10 10 11

Step 3. For each dependent variable, use the augmented matrix to formulate an
equation expressing the dependent variable as a constant plus multiples of the free
variables. Convert this equation into entries of the vectors that ensure equality for
each dependent variable, one at a time.

1 =4 — 4wy — 205 — lag + 327 =

[21] (4] [—4] [—2] [—1] [3]
To 0 1 0 0 0
T3

X= |24 = + x2 + x5 + x¢ + z7
5 0 0 1 0 0
T 0 0 0 1 0
| 27 | 10] | 0] | 0] | 0 1]

3 =24 0x9 — x5 + 326 — D7 =

(2] (4] [—4] [—2] [—1] [ 37

o 0 1 0 0 0

T3 2 0 -1 3 -5
X= |24 = + 22 + x5 + xg + x7

s 0 0 1 0 0

Tg 0 0 0 1 0

Ezd 10 | 0 ] | 0 ] | 0 ] | 1]

x4 =14+ 0x9 — 225 + 626 — 67 =
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T 4 —4 —2 -1 3
To 0 1 0 0 0
T3 2 0 -1 3 -5
Xx=|xzy| = |1| +a2| 0 + x5 |—2| +26 | 6 +x7 | —6
5 0 0 1 0 0
Tg 0 0 0 1 0
ESEN 0 | 0 | 0 1]

We can now use this final expression to quickly build solutions to the system.
You might try to recreate each of the solutions listed in the write-up for Archetype
I. (Hint: look at the values of the free variables in each solution, and notice that the
vector ¢ has 0’s in these locations.)

Even better, we have a description of the infinite solution set, based on just 5
vectors, which we combine in linear combinations to produce solutions.

Whenever we discuss Archetype I you know that’s your cue to go work through
Archetype J by yourself. Remember to take note of the 0/1 pattern at the conclusion
of Step 2. Have fun — we won’t go anywhere while you're away. A

This technique is so important, that we’ll do one more example. However, an
important distinction will be that this system is homogeneous.

Example VFSAL Vector form of solutions for Archetype L
Archetype L is presented simply as the 5 x 5 matrix
-2 -1 -2 -4 4
-6 -5 —4 -4 6
L=1|10 7 7 10 -13
-7 -5 —6 -9 10
-4 -3 -4 -6 6
We'll interpret it here as the coefficient matrix of a homogeneous system and
reference this matrix as L. So we are solving the homogeneous system LS(L, 0)
having m = 5 equations in n = 5 variables. If we built the augmented matrix, we
would add a sixth column to L containing all zeros. As we did row operations, this
sixth column would remain all zeros. So instead we will row-reduce the coefficient
matrix, and mentally remember the missing sixth column of zeros. This row-reduced
matrix is

0 0 1 -2
0 0 -2 2
0 0 2 -1
0 0 0 0 0
0 0 0 0 0

and we see r = 3 nonzero rows. The columns with leading 1’s are D = {1, 2, 3}
so the r dependent variables are x1, z2, 3. The columns without leading 1’s are
F = {4, 5}, so the n — r = 2 free variables are x4, x5. Notice that if we had included
the all-zero vector of constants to form the augmented matrix for the system, then
the index 6 would have appeared in the set F', and subsequently would have been
ignored when listing the free variables.

Step 1. Write the vector of variables (x) as a fixed vector (c), plus a linear
combination of n — r = 2 vectors (uy, uz), using the free variables as the scalars.

x1
X
X=|Z
xX
5

[ V)

+£U5

)
Il
+
8
N

Step 2. For each free variable, use 0’s and 1’s to ensure equality for the corre-
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sponding entry of the vectors. Take note of the pattern of 0’s and 1’s at this stage,
even if it is not as illuminating as in other examples.

Tl
T2

X = |[z3| = + x4 + x5
X4 0 1 0
Is 0 0 1

Step 3. For each dependent variable, use the augmented matrix to formulate an
equation expressing the dependent variable as a constant plus multiples of the free
variables. Don’t forget about the “missing” sixth column being full of zeros. Convert
this equation into entries of the vectors that ensure equality for each dependent
variable, one at a time.

EZ8 [07] [—1 [2
Z2
1 =0—1z4 + 225 = X = |x3| = + x4 + x5
T4 0 1 0
_185_ _0_ L 0 i _1
EZ8 [0 —17 27
To 0 2 —2
To =04 2z4 — 225 = x= |xz3| = + x4 + x5
Ty 0 1 0
LT5 ] _0_ L 0 i L 1 1
EZ8 [0 —17 27
To 0 2 —2
3 =0—2z4 + 125 = x=|z3| = |0| +a4 |—2| +a5 | 1
X4 0 1 0
L5 ] _0_ L 0 i L 1 1

The vector ¢ will always have 0’s in the entries corresponding to free variables.
However, since we are solving a homogeneous system, the row-reduced augmented
matrix has zeros in column n + 1 = 6, and hence all the entries of ¢ are zero. So we
can write

1 -1 2 —1 2
To 2 —2 2 -2
Xx=|x3| =0+zy |[-2| 45| 1| =24 |-2|+z5]| 1
T4 1 0 1 0
Ts5 0 1 0 1

It will always happen that the solutions to a homogeneous system has ¢ = 0
(even in the case of a unique solution?). So our expression for the solutions is a
bit more pleasing. In this example it says that the solutions are all possible linear

-1 2
2 -2
combinations of the two vectors u; = |—2| and uy = | 1 |, with no mention of
1 0
0 1

any fixed vector entering into the linear combination.
This observation will motivate our next section and the main definition of that
section, and after that we will conclude the section by formalizing this situation.A

Subsection PSHS
Particular Solutions, Homogeneous Solutions

The next theorem tells us that in order to find all of the solutions to a linear system
of equations, it is sufficient to find just one solution, and then find all of the solutions
to the corresponding homogeneous system. This explains part of our interest in the
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null space, the set of all solutions to a homogeneous system.

Theorem PSPHS Particular Solution Plus Homogeneous Solutions
Suppose that w is one solution to the linear system of equations LS(A, b). Then 'y
is a solution to LS(A, b) if and only if y = w + z for some vector z € N'(A).

Proof. Let Ay, Ao, As, ..., A, be the columns of the coefficient matrix A.
(<) Suppose y =w + z and z € N'(A). Then
b=[w]; A1 + W], Ao+ [W]; Ag +--- + W], A, Theorem SLSLC
=[w], Ay + W], Ag + [W]; Az + -+ [w], A, +0  Property ZC
=[w]; A1+ W, Ao+ [W], Az + -+ [wW],, A, Theorem SLSLC

+lzl Ar+ [zl Ag + [zl Ag - £ (2], As
= (W], + [2];) A1 + ([W], + [2],) Ao Theorem VSPCV
(Wl + [2]3) Ag + - + (W], + [2],,) A
=+w+z], A1+ [w+z, Ao+ +[w+z] A, Definition CVA
= Aty Az + [yl Az + -+ [y], An Definition of y

Applying Theorem SLSLC we see that the vector y is a solution to LS(A, b).
(=) Suppose y is a solution to LS(A, b). Then

0=b-b
=y A1+ [y, As + [yl As+---+[y], An Theorem SLSLC
— (W], A1+ [Wly Ao + W3 Ag + -+ [W], Ay)
= (Iyly = [w]) A1+ ([y], — [w],) Az Theorem VSPCV
+ ([l — [Wl3) Az + -+ ([y], — [W],) A,
=[y—wl A1+ [y —w], A Definition CVA

Iy~ wly Ag o+ [y — wl, A,

By Theorem SLSLC we see that the vector y — w is a solution to the homogeneous
system LS(A, 0) and by Definition NSM, y —w € N (A). In other words, y —w = z
for some vector z € N'(A). Rewritten, this is y = w + z, as desired. ]

After proving Theorem NMUS we commented (insufficiently) on the negation of
one half of the theorem. Nonsingular coefficient matrices lead to unique solutions for
every choice of the vector of constants. What does this say about singular matrices?
A singular matrix A has a nontrivial null space (Theorem NMTNS). For a given
vector of constants, b, the system LS(A, b) could be inconsistent, meaning there
are no solutions. But if there is at least one solution (w), then Theorem PSPHS
tells us there will be infinitely many solutions because of the role of the infinite
null space for a singular matrix. So a system of equations with a singular coefficient
matrix never has a unique solution. Either there are no solutions, or infinitely many
solutions, depending on the choice of the vector of constants (b).

Example PSHS Particular solutions, homogeneous solutions, Archetype D
Archetype D is a consistent system of equations with a nontrivial null space. Let
A denote the coefficient matrix of this system. The write-up for this system begins
with three solutions,

0 4 7
1 0 8
Y1 = ) Y2 = 0 Y3 = 1
0 3

—_

We will choose to have y; play the role of w in the statement of Theorem PSPHS,
any one of the three vectors listed here (or others) could have been chosen. To
illustrate the theorem, we should be able to write each of these three solutions as
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the vector w plus a solution to the corresponding homogeneous system of equations.
Since 0 is always a solution to a homogeneous system we can easily write
yi=w=w+0.

The vectors y5 and y3 will require a bit more effort. Solutions to the homogeneous
system LS(A, 0) are exactly the elements of the null space of the coefficient matrix,
which by an application of Theorem VFSLS is

3 o
-1 3
N(A) =4 23 1| t@a|g||®s za€C
L 0 1]
Then
4 0 4 I —3 2
0 1 -1 1 -1 3
2= fo| 2| Floa| T 2| TP | FED of | TW A
0 -1 I L0 1
where
4 -3 2
-1 —1 3
Zy = -9 :< 2) 1 +(_1) 0
-1 0 1

is obviously a solution of the homogeneous system since it is written as a linear

combination of the vectors describing the null space of the coefficient matrix (or as

a check, you could just evaluate the equations in the homogeneous system with zs).
Again

7 0 7 0 —3] 2
8 1 7 1 -1 3
Ys= 11| = |2| Tl = |2| [V 1] T2]o] | =W =
3 1 2 1 0] 1
where

7 -3 2
7 —1 3
Z3 — _1 :(—1) 1 —|—2 O
2 0 1

is obviously a solution of the homogeneous system since it is written as a linear
combination of the vectors describing the null space of the coefficient matrix (or as
a check, you could just evaluate the equations in the homogeneous system with zs).

Here’s another view of this theorem, in the context of this example. Grab two
new solutions of the original system of equations, say

11 —4
0 2
Y4 = -3 Y5 = 4
—1 2
and form their difference,
11 —4 15
o 2| _ |2
U= 1-3 407 |-7
-1 2 -3

It is no accident that u is a solution to the homogeneous system (check this!). In
other words, the difference between any two solutions to a linear system of equations
is an element of the null space of the coefficient matrix. This is an equivalent way to
state Theorem PSPHS. (See Exercise MM.T50). A
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The ideas of this subsection will appear again in Chapter LT when we discuss
pre-images of linear transformations (Definition PT).

Reading Questions

1. Earlier, a reading question asked you to solve the system of equations
21 +3x2 —x3 =0
1 +2x2 + 23 =3
1+ 32+ 323 =7
Use a linear combination to rewrite this system of equations as a vector equality.

2. Find a linear combination of the vectors

1 2 -1
S = 31, 1(0],]3
-1 4 -5
1
that equals the vector |—9].
11

3. The matrix below is the augmented matrix of a system of equations, row-reduced to
reduced row-echelon form. Write the vector form of the solutions to the system.

(1] 3 0 6 0 9
0o o [1] 2 o -8
0 0 0 0 3

Exercises

C21"  Consider each archetype that is a system of equations. For individual solutions
listed (both for the original system and the corresponding homogeneous system) express
the vector of constants as a linear combination of the columns of the coefficient matrix, as
guaranteed by Theorem SLSLC. Verify this equality by computing the linear combination.
For systems with no solutions, recognize that it is then impossible to write the vector of
constants as a linear combination of the columns of the coefficient matrix. Note too, for
homogeneous systems, that the solutions give rise to linear combinations that equal the
zero vector.

Archetype A, Archetype B, Archetype C, Archetype D, Archetype E, Archetype F, Archetype
G, Archetype H, Archetype I, Archetype J

C22'  Consider each archetype that is a system of equations. Write elements of the solution
set in vector form, as guaranteed by Theorem VFSLS.

Archetype A, Archetype B, Archetype C, Archetype D, Archetype E, Archetype F, Archetype
G, Archetype H, Archetype I, Archetype J

C40"  Find the vector form of the solutions to the system of equations below.
217 —4xo +3x3 + 25 =6
r1 — 229 — 223 + 1424 — 425 = 15
1 —2x2 + 23+ 2x4 + 25 = —1
—2x1 +4x0 — 12204 + x5 = —7

C41"  Find the vector form of the solutions to the system of equations below.
—2x1 — 1o — 823 + 8x4 + 425 — 926 — 17 — 1l — 1829 = 3
3xr1 — 2x9 + dxs + 2x4 — 225 — bxe + 17 + 228 + 1529 = 10
4z — 220 + 8x3 + 2x5 — 14w — 228 + 229 = 36
—1x1 4+ 2x2 + lxs — 624 + Txg — lx7 — 329 = —8
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3x1 + 2xo + 1323 — 1424 — 15 + g — 1lwg + 1229 = 15
—2x1 + 2x2 — 223 — 4x4 + 15 + 626 — 2207 — 228 — 1529 = —7

M10" Example TLC asks if the vector

13
15
w— 5
—17
2
25
can be written as a linear combination of the four vectors
2 6 -5 3
4 3 2 2
u; = _3 Uz = 0 us = 1 uy = _5
1 —2 1 7
2 1 -3 1
9 4 0 3

Can it? Can any vector in C® be written as a linear combination of the four vectors
ui, uz, us, U4?

M11" At the end of Example VFS, the vector w is claimed to be a solution to the linear
system under discussion. Verify that w really is a solution. Then determine the four scalars
that express w as a linear combination of ¢, ui, us, us.



Section SS
Spanning Sets

In this section we will describe a compact way to indicate the elements of an infinite
set of vectors, making use of linear combinations. This will give us a convenient way
to describe the elements of a set of solutions to a linear system, or the elements of
the null space of a matrix, or many other sets of vectors.

Subsection SSV
Span of a Set of Vectors

In Example VFSAL we saw the solution set of a homogeneous system described
as all possible linear combinations of two particular vectors. This happens to be a
useful way to construct or describe infinite sets of vectors, so we encapsulate this
idea in a definition.

Definition SSCV Span of a Set of Column Vectors
Given a set of vectors S = {uy, ug, ug, ..., u,}, their span, (5), is the set of all
possible linear combinations of u;, ug, us, ..., u,. Symbolically,

(S) ={a1uw + agug +azuz + -+ apuy| oy € C, 1 < i < p}

i=1

aiGC,lgiSp}

O

The span is just a set of vectors, though in all but one situation it is an infinite
set. (Just when is it not infinite?) So we start with a finite collection of vectors S (p
of them to be precise), and use this finite set to describe an infinite set of vectors,
(S). Confusing the finite set S with the infinite set (S) is one of the most pervasive
problems in understanding introductory linear algebra. We will see this construction
repeatedly, so let’s work through some examples to get comfortable with it. The
most obvious question about a set is if a particular item of the correct type is in the
set, or not.

Example ABS A basic span
Consider the set of 5 vectors, S, from C*

1M T2 7 17 -1
THE! 3 1 0
S=90sl 121 5] |=1|' |9
121 =s] |2 0

and consider the infinite set of vectors (.S) formed from all possible linear combinations
of the elements of S. Here are four vectors we definitely know are elements of (S},
since we will construct them in accordance with Definition SSCV,

1 M2 7 7] 1] [—17 [—4
1 1 3 1 0 2
W = (2) 3 + (1) ) + (_1) 5 + (2) -1 + (3) 9| = |28
1 -1 —5] | 2 | | 0 | | 10
1 2] 77 M1 [—17] [—26
1 1 3 1 0 —6
X = (5) 3 + (76) ) + (73) 5 + (4) -1 + (2) 9 = 2
1 | —1] L —5] L 2 ] | 0 ] | 34
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1 2 7 1 -1 7

1 1 3 1 0 4

y = (1) 3 +(0) 9 + (1) 5 +(0) -1 + (1) 9| = 17
1 —1 ) 2 0 —4

1 2 7 1 -1 0

1 1 3 1 0 0

z = (0) 3| + (0) o | (0) 5|+ (0) |t (0) 9| =1lo
1 -1 -5 2 0 0

The purpose of a set is to collect objects with some common property, and to
exclude objects without that property. So the most fundamental question about a
set is if a given object is an element of the set or not. Let’s learn more about (S) by
investigating which vectors are elements of the set, and which are not.

—15
First, is u = Ig6 an element of (S)? We are asking if there are scalars
5
a1, g, g, oy, as such that
1 2 7 1 -1 —15
ar 3| +az| 5 | +as| 5 [ rar| L) ras| g mu= g
1 -1 ) 2 0 5

Applying Theorem SLSLC we recognize the search for these scalars as a solution
to a linear system of equations with augmented matrix

1 2 7 1 -1 —15]
1 1 3 1 0 -6
3 2 5 -1 9 19
1 -1 -5 2 0 )

which row-reduces to

0
0
0

H
OHO
e~
o O
|
[
|
Nej

2 -7
0 0 0 0 0]

At this point, we see that the system is consistent (Theorem RCLS), so we know
there is a solution for the five scalars oy, as, a3, a4, as. This is enough evidence for
us to say that u € (S). If we wished further evidence, we could compute an actual
solution, say

a1:2 agzl a3:—2 a4:—3 a5:2

This particular solution allows us to write

1 2 7 1 -1 —15
1 1 3 1 0 —6
(2) 3 + (1) 9 +(=2) 5 +(=3) 1 +(2) 9| =1 | 19
1 -1 -5 2 0 5
making it even more obvious that u € (S).
3
Lets do it again. Is v = ; an element of (S)? We are asking if there are
-1
scalars aq, g, ag, ay, as such that
1 2 7 1 -1 3
1 1 3 1 0 1
S + g 9 + as 5 + gy 1 + as 9| =V=139

1 -1 -5 2 0 -1
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Applying Theorem SLSLC we recognize the search for these scalars as a solution
to a linear system of equations with augmented matrix
1 2 7T 1 -1 3
1 1 3 1 0 1
3 2 5 -1 9 2
1 -1 -5 2 0 -1

which row-reduces to

0 -1 0 3 0
0 4 0 -1 0
0 0 0 -2 0
0 0 0 0 0

At this point, we see that the system is inconsistent by Theorem RCLS, so we
know there is not a solution for the five scalars ay, as, as, a4, as. This is enough
evidence for us to say that v ¢ (S). End of story. A

Example SCAA Span of the columns of Archetype A
Begin with the finite set of three vectors of size 3